

# MO-H / MO-HW



# **GÜLTIG FÜR**

















#### **BAUSTOFFE**













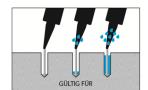
## **EIGENSCHAFTEN**

- Zugelassen für strukturelle Anwendungen in gerissenen und ungerissenen Beton M8-M30. Bewehrung als Bolzen von Ø8 bis Ø32.
- Zugelassen für Nachträglich eingemörtelter Bewehrungsanschluss mit Injektionsmörtel von Ø8 bis Ø25.
- Zugelassen für Verankerung im Mauerwerk.
- Zertifikat Kontakt mit Trinkwasser (WRAS).
- Zertifikat der Feuerwiderstands für Bolzen und Bewehrungsstäbe (IBMB).
- Zertifikat LEED und A+, Styrolfrei.
- Für den Einsatz mit schweren Lasten, statischen oder quasi-statischen. Erdbebenlasten C1.
- Nutzungsdauer von 50 und/oder 100 Jahren.
- Gültig für trockene Löcher, nass und überflutet.
- Ausführungen aus verzinktem Stahl, Feuerverzinkt, Edelstahl A2, A4 und HCR.
- Gebrauchstemperaturbereich: -40°C bis +80°C (langfristige Höchsttemperatur +50°C).

# **ZUGELASSEN FÜR**



# M8-M30 Gewindestange

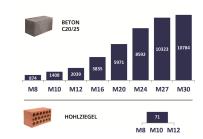



Ø8 – Ø32 Rebar

# **ANWENDUNGSBEREICHE**

- Für den Einsatz in Innen- und Außenbereichen.
- Strukturanwendungen
- Befestigung von Gebäudekonstruktionen.
- Betonstahl und Bewehrungsstahl.
- Zur Befestigung von Maschinen, Balkonen, Markisen, Regalen, Anschlagtafeln, Oberleitungen, Schutzabsperrungen, Geländern, Handläufen usw.
- Große Abmessungen, Stützmauern

### **ABMESSUNGEN**




## **ANWENDUNGSBEISPIELE**





# MAXIMAL EMPFOHLENE ZUGLAST [kg]

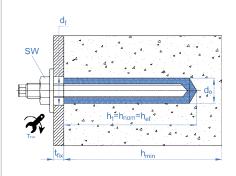


Ref. **FT MOH-de** Rev: 7 **24/02/25 1** von **12** 



| 1. PAI  | 1. PALETTE         |                    |              |                            |                                                                                                 |    |  |  |  |
|---------|--------------------|--------------------|--------------|----------------------------|-------------------------------------------------------------------------------------------------|----|--|--|--|
| ARTIKEL | ARTIKELNR.         | GRÖSSE             | ABBILDUNG    | BESTANDTEIL                | MATERIAL                                                                                        |    |  |  |  |
| 1       | МОН300<br>МОН410   | 300 ml.<br>410 ml. | MERIO DE SIN | STYROLFREIER<br>HYBRIDHARZ | Styrolfreies Hybridharz.<br>Aufmachung: 300 und 410 ml Kartuschen                               | 12 |  |  |  |
| 2       | MOHW300<br>MOHW410 | 300 ml.<br>410 ml. | HEBIORESH .  | STYROLFREIER<br>HYBRIDHARZ | Styrolfreies Hybridharz,<br>Tieftemperaturanwendungen.<br>Aufmachung: 300 und 410 ml Kartuschen | 12 |  |  |  |

| 2. ZUI  | BEHÖR                             |           |                                         |                                                                                                                                                                                   |
|---------|-----------------------------------|-----------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ARTIKEL | ARTIKELNR.                        | ABBILDUNG | BESTANDTEIL                             | MATERIAL                                                                                                                                                                          |
| 1       | MOPISSI                           |           | PISTOLEN                                | Pistole für 300 ml Kartuschen zu 300 ml.                                                                                                                                          |
| '       | MOPISTO                           |           | PISTOLEN                                | Pistole für 410 ml Koaxial-Kartuschen Patronen zu<br>410 ml.                                                                                                                      |
| 2       | EQ-AC<br>EQ-8.8<br>EQ-A2<br>EQ-A4 |           | ANKERSTANGEN                            | Ankerstange aus Stahl, Klasse 5.8 ISO 898-1. Ankerstange aus Stahl, Klasse 8.8 ISO 898-1. Ankerstange aus nichtrostendem Stahl A2-70. Ankerstange aus nichtrostendem Stahl A4-70. |
| 3       | MORCEPKIT                         |           | REINIGUNGSBÜRST<br>EN                   | Set mit 3 Reinigungsbürsten mit ø14, ø20 und ø29 mm.                                                                                                                              |
| 4       | МОВОМВА                           |           | BOHRLOCH-<br>AUSBLÄSER                  | Bohrloch-Ausbläser zum Entfernen von Staubresten und Bohrrückständen                                                                                                              |
| 5       | MORCANU                           |           | STATIKMISCHER                           | Kunststoff. Statische Mischung durch<br>Strömungsbewegung.                                                                                                                        |
| 6       | MO-TN                             |           | KUNSTSTOFF<br>INJEKTIONS-<br>ANKERHÜLSE | Weißer oder grauer Kunststoff.                                                                                                                                                    |
| 7       | MO-TR                             |           | INNENGEWINDEAN<br>KER                   | Innengewindeanker M8, M10, M12, verzinkt.                                                                                                                                         |
| 8       | МО-ТМ                             |           | METALLSIEB                              | Metallsieb Ø12, Ø16 und Ø22.                                                                                                                                                      |


Ref. **FT MOH-de** Rev: 7 **24/02/25 2** von **12** 



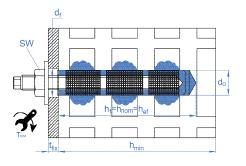
# 3. ANGABEN ZUR MONTAGE

# 3.1. VERANKERUNGEN IN BETON (MONTAGEPARAMETER)

| ABMESSUNG                                                         |      | M8                     | M10                    | M12                    | M16                    | M20                    | M24                    | M27  | M30                |
|-------------------------------------------------------------------|------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------|--------------------|
| d <sub>0:</sub> Nenndurchmesser                                   | [mm] | 10                     | 12                     | 14                     | 18                     | 22                     | 26                     | 30   | 35                 |
| d <sub>f</sub> : Durchgangsloch im<br>anzuschliessenden Bauteil ≤ | [mm] | 9                      | 12                     | 14                     | 18                     | 22                     | 26                     | 30   | 33                 |
| T <sub>ins</sub> : Drehmoment ≤                                   | [Nm] | 10                     | 20                     | 40                     | 80                     | 150                    | 200                    | 240  | 275                |
| Runde Reinigungsbürste                                            |      | Ø                      | 14                     | Ø:                     | 20                     | Ø:                     | 29                     | Q    | 540                |
| h <sub>ef,min</sub>                                               |      |                        |                        |                        |                        |                        |                        |      |                    |
| h <sub>1</sub> : Bohrlochtiefe                                    | [mm] | 64                     | 80                     | 96                     | 128                    | 160                    | 192                    | 216  | 240                |
| s <sub>cr,N</sub> : Kritischer Achsabstand                        | [mm] | 192                    | 240                    | 288                    | 384                    | 480                    | 576                    | 648  | 720                |
| c <sub>cr,N</sub> : Kritischer Randabstand                        | [mm] | 96                     | 120                    | 144                    | 192                    | 240                    | 288                    | 324  | 360                |
| c <sub>min</sub> : Minimal zulässiger Randabstand                 | [mm] | 35                     | 40                     | 50                     | 65                     | 80                     | 96                     | 110  | 120                |
| s <sub>min</sub> : Minimal zulässiger Achsabstand                 | [mm] | 35                     | 40                     | 50                     | 65                     | 80                     | 96                     | 110  | 120                |
| h <sub>min</sub> : Minimale Betondicke                            | [mm] | 100                    | 110                    | 126                    | 158                    | 204                    | 244                    | 276  | 310                |
| Standard-Bolzen                                                   |      |                        |                        |                        |                        |                        |                        |      |                    |
| h <sub>1</sub> : Bohrlochtiefe                                    | [mm] | 80                     | 90                     | 110                    | 128                    | 170                    | 210                    | -    | 280                |
| s <sub>cr,N</sub> : Kritischer Achsabstand                        | [mm] | 240                    | 270                    | 330                    | 384                    | 510                    | 630                    | -    | 840                |
| c <sub>cr,N</sub> : Kritischer Randabstand                        | [mm] | 120                    | 135                    | 165                    | 192                    | 255                    | 315                    | -    | 420                |
| c <sub>min</sub> : Minimal zulässiger Randabstand                 | [mm] | 43                     | 45                     | 56                     | 65                     | 85                     | 105                    | -    | 140                |
| s <sub>min</sub> : Minimal zulässiger Achsabstand                 | [mm] | 43                     | 45                     | 56                     | 65                     | 85                     | 105                    | -    | 140                |
| h <sub>min</sub> : Minimale Betondicke                            | [mm] | 110                    | 120                    | 140                    | 158                    | 214                    | 262                    | -    | 350                |
| h <sub>ef,max</sub>                                               |      |                        |                        |                        |                        |                        |                        |      |                    |
| h <sub>1</sub> : Bohrlochtiefe                                    | [mm] | 160                    | 200                    | 240                    | 320                    | 400                    | 480                    | 540  | 600                |
| s <sub>cr,N</sub> : Kritischer Achsabstand                        | [mm] | 480                    | 600                    | 720                    | 960                    | 1200                   | 1440                   | 1620 | 1800               |
| c <sub>cr,N</sub> : Kritischer Randabstand                        | [mm] | 240                    | 300                    | 360                    | 480                    | 600                    | 720                    | 810  | 900                |
| c <sub>min</sub> : Minimal zulässiger Randabstand                 | [mm] | 80                     | 100                    | 120                    | 160                    | 200                    | 240                    | 270  | 300                |
| s <sub>min</sub> : Minimal zulässiger Achsabstand                 | [mm] | 80                     | 100                    | 120                    | 160                    | 200                    | 240                    | 270  | 300                |
| h <sub>min</sub> : Minimale Betondicke                            | [mm] | 176                    | 220                    | 264                    | 352                    | 444                    | 532                    | 600  | 730                |
| Code verzinkte Ankerstange 5.8 / 8                                | 3.8  | EQAC08110<br>EQ8808110 | EQAC10130<br>EQ8810130 | EQAC12160<br>EQ8812160 | EQAC16190<br>EQ8816190 | EQAC20260<br>EQ8820260 | EQAC24300<br>EQ8824300 |      | EQAC303<br>EQ88303 |
| Code Ankerstange in Edelstahl A2 /                                | A4   | EQA208110<br>EQA408110 | EQA210130<br>EQA410130 | EQA212160<br>EQA412160 | EQA216190<br>EQA416190 | EQA220260<br>EQA420260 | EQA224300<br>EQA424300 |      | EQA2303<br>EQA4303 |



- Der Wert der Tiefe hef kann vom Benutzer zwischen hef,min = 8d und hef,max = 12d gewählt werden. Zwischenwerte können interpoliert werden.
- Die kritischen Abstände sind die, bei denen sich die Dübel einer
   Verankerungsgruppe bei Zuglasten gerade nicht untereinander beeinflussen. Für geringere Abstände bis zu den Mindestabständen müssen die entsprechenden
   Reduktionsfaktoren angewendet werden.
- Es sind Standardbolzen jeder Abmessung nach Tabelle verfügbar.


Ref. **FT MOH-de** Rev: 7 **24/02/25 3** von **12** 



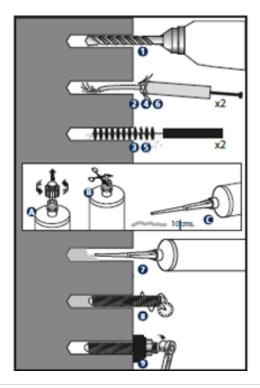
| 3.2. VERANKERUNGEN IN VOLL- ODER HOHLZIEGELN (MONTAGEPARA) | AMETER) | (MONTAGEPAR/ | <b>HOHLZIEGELN (</b> I | ODER | <b>VOLL-</b> | RUNGEN IN | 3.2. VERANKERU | 3. |
|------------------------------------------------------------|---------|--------------|------------------------|------|--------------|-----------|----------------|----|
|------------------------------------------------------------|---------|--------------|------------------------|------|--------------|-----------|----------------|----|

| ABME                                     | SSUNG        |          | M8        | M10       | M12       |
|------------------------------------------|--------------|----------|-----------|-----------|-----------|
| Vatataffaiah                             |              | ls       | 85        | 85        | 85        |
| Kunststoffsieb                           |              | $d_0$    | 15        | 15        | 20        |
| Mörtelvolumen je Sieb                    |              | [ml]     | 15        | 15        | 27        |
| h₁: Bohrtiefe ≥                          |              | [mm]     | 90        | 90        | 90        |
| h <sub>nom</sub> : Tiefe Siebmontage     |              | [mm]     | 85        | 85        | 85        |
| h <sub>ef</sub> : Tiefe Bolzen ≥         |              | [mm]     | 80        | 80        | 80        |
| t <sub>fix</sub> : Dicke zu befestigende | s Material ≤ | [mm]     | 22        | 25        | 18        |
| h <sub>c</sub> : Dicke Grundmaterial ≥   | :            | [mm]     | 110       | 110       | 110       |
| d <sub>f</sub> : Durchmesser Blech ≤     |              | [mm]     | 9         | 12        | 14        |
| T <sub>ins</sub> : Drehmoment ≤          |              | [Nm]     | 2         | 2         | 2         |
| Runde Bürste                             |              |          |           |           |           |
| Code Ankerstange                         | =9-          | <u>.</u> | MOES08110 | MOES10115 | MOES12110 |
| Code Sieb                                |              |          | MOTN15085 | MOTN15085 | MOTN20085 |

| BAUSTOFFE                |      | KUNSTSTOFFSIEB                                         |                                                          |                                                  |                                                        |                                                          |                                                  |  |  |
|--------------------------|------|--------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|--|--|
| DAUSTOFFE                |      | M8, M10                                                |                                                          | M12                                              |                                                        |                                                          |                                                  |  |  |
| Mindest- und Randabstand |      | $\mathbf{c}_{\mathrm{cr}} = \mathbf{c}_{\mathrm{min}}$ | $\mathbf{s}_{\text{cr II}} = \mathbf{s}_{\text{min II}}$ | $\mathbf{s}_{cr} \perp = \mathbf{s}_{min} \perp$ | $\mathbf{c}_{\mathrm{cr}} = \mathbf{c}_{\mathrm{min}}$ | $\mathbf{s}_{\text{cr II}} = \mathbf{s}_{\text{min II}}$ | $\mathbf{s}_{cr} \perp = \mathbf{s}_{min} \perp$ |  |  |
| Ziegel Nummer 1          | [mm] | 100                                                    | 245                                                      | 110                                              | 120                                                    | 245                                                      | 110                                              |  |  |
| Ziegel Nummer 2          | 100  | 373                                                    | 238                                                      | 120                                              | 373                                                    | 238                                                      |                                                  |  |  |



Für Verankerungen in Hohlsteinen ist ein Sieb aus Kunststoff oder Metall zu verwenden, um zu vermeiden, dass das Harz durch die Hohlräume fällt.


# Ziegel Nr. 1 Hohlbackstein nach EN 771-1 Länge / Breite / Höhe: 245 mm / 110 mm / 88 mm $f_b \geq 2,5 \text{ N/mm}^2 / \rho \geq 0,74 \text{ kg/dm}^3$ Ziegel Nr. 2 Hohlbackstein Porotherm nach EN 771-1 Länge / Breite / Höhe: 373 mm / 250 mm / 238 mm $f_b \geq 12 \text{ N/mm}^2 / \rho \geq 0,9 \text{ kg/dm}^3$

Ref. **FT MOH-de** Rev: 7 **24/02/25 4** von **12** 



## 4. PRODUKTINSTALLATION

#### 4.1. MONTAGE IN BETON



#### 1. BOHREN

Prüfen, dass der Beton einwandfrei verdichtet und frei von nennenswerten Poren ist

Zugelassen für Verarbeitung in trockenen, feuchten und wassergefüllten Bohrlöchern.

Temperaturen Patronen: ≥ 5 °C.

Temperatur Grundmaterial: MO-H ≥ 5 °C

MO-HW ≥ -10 ºC

Bohren mit Schlag- oder Hammerbohrer.

Mit angegebenem Durchmesser und Tiefe bohren.

#### 2 - 6. AUSBLASEN UND REINIGEN

Bohrloch, wie in der Abbildung gezeigt, von Staubresten und Bohrrückständen befreien. Ist Wasser im Bohrloch, muss es vor dem Einbringen des Mörtels beseitigt werden.

#### A - B\* - C. KARTUSCHE ÖFFNEN

Statikmischer auf die Kartusche schrauben und auf die Pistole aufsetzen. Auslöser drücken, bis der Mörtel in gleichmäßig grauer Farbe aus der Spitze austritt, Farbabweichungen sind ein Zeichen für eine fehlerhafte Mischung; Erste zwei Hupvorgänge jeder Kartusche verwerfen und nicht für Verankerungen verwenden. \*Bei 300 ml Kartuschen, Folienbeutel hinter dem Verschlussring abschneiden.

#### 7. MÖRTEL AUFTRAGEN

Statikmischer bis zur festgelegten Setztiefe einführen und Mörtel einbringen; Statikmischer langsam zurückziehen und dabei darauf achten, dass sich keine Lufteinschlüsse bilden.

Bohrloch zu ½ bis ¾ befüllen.

Wird die Kartusche nicht vollständig verbraucht, Statikmischer montiert lassen. Nur austauschen, wenn sie erst nach der Verarbeitungszeit wieder zum Einsatz kommen soll, in diesem Fall wieder die ersten beiden Hupvorgänge verwerfen.

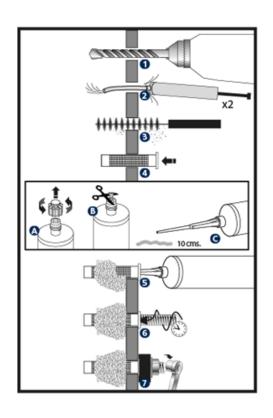
## 8. INSTALLIEREN

Zu installierenden Bolzen per Hand bis zur festgelegten Setztiefe einführen und sicherstellen, dass der Mörtel den Gewindegang bedeckt. Die Einführung der Verankerung hat innerhalb der Verarbeitungszeit zu erfolgen. An der Bohrlochmündung muss Mörtel überlaufen, um sicherzustellen, dass der Hohlraum zwischen Bolzen und Bohrloch vollständig ausgefüllt ist.

# **TEMPERATUR UND AUSHÄRTEZEIT**

| ТҮР   | Temperatur Grundmaterial [ºC] | Verarbeitungszeit [min] | Aushärtezeit [min] |
|-------|-------------------------------|-------------------------|--------------------|
|       | +5 bis +10                    | 10                      | 145                |
|       | +10 bis +15                   | 8                       | 85                 |
| МО-Н  | +15 bis +20                   | 6                       | 75                 |
|       | +20 bis +25                   | 5                       | 50                 |
|       | +25 bis +30                   | 4                       | 40                 |
|       | -10 a -5*                     | 50                      | 720                |
|       | -5 a 0*                       | 15                      | 100                |
| MO-HW | 0 a +5*                       | 10                      | 75                 |
|       | +5 a +20                      | 5                       | 50                 |
|       | +20                           | 100 sekunden            | 20                 |

#### 9. DREHMOMENT BEIM VERANKERN


Nach Ablauf der Aushärtezeit Anzugsdrehmoment anwenden, dabei nicht den Tabellenwert überschreiten

Ref. FT MOH-de Rev: 7 24/02/25 5 von 12

<sup>\*</sup>Aushärtezeit nicht von ETA abgedeckt



#### 4.2. MONTAGE IN BACKSTEINEN



#### 1. BOHREN

Prüfen, dass der Beton einwandfrei verdichtet und frei von nennenswerten Poren ist.

Zugelassen für Verarbeitung in trockenen, feuchten und wassergefüllten Bohrlöchern.

Temperaturen Patronen: ≥ 5 °C.

Temperatur Grundmaterial: MO-H ≥ 5 °C

MO-HW ≥ -10 ºC

Bohren mit Schlag- oder Hammerbohrer.

Mit angegebenem Durchmesser und Tiefe bohren.

# 2 - 3. AUSBLASEN UND REINIGEN

Bohrloch, wie in der Abbildung gezeigt, von Staubresten und Bohrrückständen befreien. Ist Wasser im Bohrloch, muss es vor dem Einbringen des Mörtels beseitigt werden

#### 4. SIEB ANBRINGEN

Bei Hohlsteinen Kunststoff oder Metallsieb in das Bohrloch einführen, sodass es mit der Oberfläche des Grundmaterials bündig ist. Glattputz, Unterputz usw. ist zu beseitigen, sodass das Sieb mit dem Backstein bündig

#### A - B\* - C. KARTUSCHE ÖFFNEN

Statikmischer auf die Kartusche schrauben und auf die Pistole aufsetzen. Auslöser drücken, bis der Mörtel in gleichmäßig grauer Farbe aus der Spitze austritt, Farbabweichungen sind ein Zeichen für eine fehlerhafte Mischung; Erste zwei Hupvorgänge jeder Kartusche verwerfen und nicht für Verankerungen verwenden. \*Bei 300 ml Kartuschen , Folienbeutel hinter dem Verschlussring abschneiden.

#### 7. MÖRTEL AUFTRAGEN

Statikmischer bis zur festgelegten Setztiefe einführen und Mörtel einbringen; Statikmischer langsam zurückziehen und dabei darauf achten, dass sich keine Lufteinschlüsse bilden.

Bohrloch zu ½ bis ¾ befüllen.

Wird die Kartusche nicht vollständig verbraucht, Statikmischer montiert lassen. Nur austauschen, wenn sie erst nach der Verarbeitungszeit wieder zum Einsatz kommen soll, in diesem Fall wieder die ersten beiden Hupvorgänge verwerfen.

## 6. INSTALLIEREN

Zu installierenden Bolzen per Hand mit leichter Schraubbewegung bis zur festgelegten Setztiefe einführen und sicherstellen, dass der Mörtel den Gewindegang bedeckt. Die Einführung der Verankerung hat innerhalb der Verarbeitungszeit zu erfolgen.

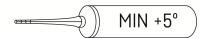
## TEMPERATUR UND AUSHÄRTEZEIT

| ТҮР   | Temperatur Grundmaterial [ºC] | Verarbeitungszeit [min] | Aushärtezeit [min] |
|-------|-------------------------------|-------------------------|--------------------|
|       | +5 bis +10                    | 10                      | 145                |
|       | +10 bis +15                   | 8                       | 85                 |
| MO-H  | +15 bis +20                   | 6                       | 75                 |
|       | +20 bis +25                   | 5                       | 50                 |
|       | +25 bis +30                   | 4                       | 40                 |
|       | -10 a -5*                     | 50                      | 720                |
|       | -5 a 0*                       | 15                      | 100                |
| MO-HW | 0 a +5*                       | 10                      | 75                 |
|       | +5 a +20                      | 5                       | 50                 |
|       | +20                           | 100 sekunden            | 20                 |

#### 7. DREHMOMENT BEIM VERANKERN

Nach Ablauf der Aushärtezeit Anzugsdrehmoment anwenden, dabei nicht den Tabellenwert in überschreiten

Ref. FT MOH-de Rev: 7 24/02/25 6 von 12


<sup>\*</sup>Aushärtezeit nicht von ETA abgedeckt



# **5. LAGERUNGSBEDINGUNGEN**

Produkt an einem trockenen und kühlen Ort bei einer Temperatur zwischen +5 °C bis +25 °C aufbewahren und vor direkter Sonneneinstrahlung und Hitzequellen schützen.







Haltbarkeit bei ungeöffneter Kartusche: 18/12 Monate für bzw, Monate nach Fertigung. Das Verfalldatum ist außen an der Kartusche angegeben.

# 6. WIDERSTÄNDE

## **6.1 VERANKERUNG IN BETON**

Charakteristische Widerstände in ungerissenem Beton C20/25 für Einzelbefestigung (kein Einfluss von Anker- und Randabständen) und Ankerstange der Güteklasse 5.8, 8.8 oder aus Edelstahl A2-70 und A4-70.

# **CHARAKTERISTISCHE WIDERSTÄNDE**

| TYPE BETON         |                     | DURCHMESSER |                                 |                 |      |             | M10         | M12         | M16         | M20          | M24          | M27          | M30          |
|--------------------|---------------------|-------------|---------------------------------|-----------------|------|-------------|-------------|-------------|-------------|--------------|--------------|--------------|--------------|
|                    |                     |             | h <sub>ef,min</sub> = 8d        | N <sub>Rk</sub> | [kN] | 16,0        | 23,8        | 34,3        | 57,9        | 85,4         | 115,8        | 119,0        | 124,4        |
|                    | _                   | Zugkraft    | Standard Gewindestück           | N <sub>Rk</sub> | [kN] | 20,1        | 26,8        | 39,4        | 57,9        | 90,7         | 126,6        |              | 145,1        |
| N<br>O             | VERZINKT            | Zugkiait    | h <sub>ef,max</sub> = 20d - 5.8 | $N_{Rk}$        | [kN] | <u>18,0</u> | <u>29,0</u> | <u>42,0</u> | <u>79,0</u> | <u>123,0</u> | <u>177,0</u> | 297,7        | 311,0        |
| UNGERISSENEN BETON | VERZ                |             | $h_{ef,max} = 20d - 8.8$        | N <sub>Rk</sub> | [kN] | <u>29,0</u> | <u>46,0</u> | <u>67,0</u> | 144,7       | 213,6        | 289,5        | 297,7        | 311,0        |
| NEN                |                     | Querkraft   | Alle Tiefen 5.8                 | $V_{Rk}$        | [kN] | <u>9,0</u>  | <u>15,0</u> | <u>21,0</u> | <u>39,0</u> | <u>61,0</u>  | <u>88,0</u>  | <u>115,0</u> | <u>140,0</u> |
| ISSE               |                     | Querkiait   | Alle Tiefen 8.8                 | $V_{Rk}$        | [kN] | <u>15,0</u> | <u>23,0</u> | <u>34,0</u> | <u>63,0</u> | <u>98,0</u>  | <u>141,0</u> | <u>184,0</u> | <u>224,0</u> |
| IGER               | <u>ec</u>           | Zugkraft    | h <sub>ef,min</sub> = 8d        | N <sub>Rk</sub> | [kN] | 16,0        | 23,8        | 34,3        | 57,9        | 85,4         | 115,8        | 119,0        | 124,4        |
| 5                  | STFREIE             |             | Standard Gewindestück           | $N_{Rk}$        | [kN] | 20,1        | 26,8        | 39,4        | 57,9        | 90,7         | 126,6        |              | 145,1        |
|                    | ROSTFREIER<br>STAHL |             | h <sub>ef,max</sub> = 20d       | $N_{Rk}$        | [kN] | <u>26,0</u> | <u>41,0</u> | <u>59,0</u> | 110,0       | <u>172,0</u> | <u>247,0</u> | 297,7        | 311,0        |
|                    | Ž.                  | Querkraft   | Alle Tiefen                     | V <sub>Rk</sub> | [kN] | <u>13,0</u> | <u>20,0</u> | <u>30,0</u> | <u>55,0</u> | <u>86,0</u>  | <u>124,0</u> | <u>161,0</u> | <u>196,0</u> |
|                    |                     |             | h <sub>ef,min</sub> = 8d        | $N_{Rk}$        | [kN] |             | 11,3        | 16,2        | 28,9        | 40,2         | 57,9         |              |              |
|                    | Ϋ́                  | Zugkraft    | Standard Gewindestück           | $N_{Rk}$        | [kN] |             | 12,7        | 18,6        | 28,9        | 42,7         | 63,3         |              |              |
| NO<br>O            | VERZINKT            |             | h <sub>ef,max</sub> = 20d       | N <sub>Rk</sub> | [kN] |             | 28,2        | 40,7        | 72,3        | 100,5        | 144,7        |              |              |
| BET                | VE                  | 0 1 0       | Alle Tiefen 5.8                 | $V_{Rk}$        | [kN] |             | <u>15,0</u> | 21,0        | <u>39,0</u> | <u>61,0</u>  | <u>88,0</u>  |              |              |
| GERISSENEN BETON   |                     | Querkraft   | Alle Tiefen 8.8                 | V <sub>Rk</sub> | [kN] |             | 23,0        | <u>34,0</u> | <u>63,0</u> | <u>98,0</u>  | <u>141,0</u> |              |              |
| IISSE              | <b>~</b>            |             | h <sub>ef,min</sub> = 8d        | N <sub>Rk</sub> | [kN] |             | 11,3        | 16,2        | 28,9        | 40,2         | 57,9         |              |              |
| GEF                | REIE                | Zugkraft    | Standard Gewindestück           | N <sub>Rk</sub> | [kN] |             | 12,7        | 18,6        | 28,9        | 42,7         | 63,3         |              |              |
|                    | ROSTFREIER<br>STAHL |             | h <sub>ef,max</sub> = 20d       | N <sub>Rk</sub> | [kN] |             | 28,2        | 40,7        | 72,3        | 100,5        | 144,7        |              |              |
|                    | RC                  | Querkraft   | Alle Tiefen                     | V <sub>Rk</sub> | [kN] |             | 20,0        | <u>30,0</u> | <u>55,0</u> | <u>86,0</u>  | <u>124,0</u> |              |              |

Ref. **FT MOH-de** Rev: 7 **24/02/25 7** von **12** 



| BEM                | IESSUN              | IGS WIDER | STÄNDE                          |                 |      |             |             |             |             |             |              |              |              |
|--------------------|---------------------|-----------|---------------------------------|-----------------|------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|--------------|
| TYPE BETON         | DURCHMESSER         |           |                                 |                 |      | M8          | M10         | M12         | M16         | M20         | M24          | M27          | M30          |
|                    |                     |           | h <sub>ef,min</sub> = 8d        | N <sub>Rd</sub> | [kN] | 8,9         | 13,2        | 19,1        | 32,1        | 47,4        | 64,3         | 56,7         | 59,2         |
|                    |                     | Zugkraft  | Standard Gewindestück           | N <sub>Rd</sub> | [kN] | 11,1        | 14,9        | 21,8        | 32,1        | 50,4        | 70,3         |              | 69,1         |
| NO                 | VERZINKT            | Zugkraft  | h <sub>ef,max</sub> = 20d - 5.8 | N <sub>Rd</sub> | [kN] | <u>12,0</u> | <u>19,3</u> | <u>28,0</u> | <u>52,6</u> | <u>82,0</u> | <u>118,0</u> | 141,7        | 148,1        |
| UNGERISSENEN BETON | VERZ                |           | h <sub>ef,max</sub> = 20d - 8.8 | N <sub>Rd</sub> | [kN] | <u>19,3</u> | <u>30,6</u> | <u>44,6</u> | 80,4        | 118,6       | 160,8        | 141,7        | 148,1        |
| Z<br>Z<br>Z        |                     | Querkraft | Alle Tiefen 5.8                 | $V_{Rd}$        | [kN] | <u>7,2</u>  | <u>12,0</u> | <u>16,8</u> | <u>31,2</u> | <u>48,8</u> | <u>70,4</u>  | <u>92,0</u>  | <u>112,0</u> |
| IISSE              |                     | Querkiait | Alle Tiefen 8.8                 | $V_{Rd}$        | [kN] | <u>12,0</u> | <u>18,4</u> | <u>27,2</u> | <u>50,4</u> | <u>78,4</u> | <u>112,8</u> | <u>147,2</u> | <u>179,2</u> |
| GEF                | œ                   |           | h <sub>ef,min</sub> = 8d        | N <sub>Rd</sub> | [kN] | 8,9         | 13,2        | 19,1        | 32,1        | 47,4        | 64,3         | 56,7         | 59,2         |
| 5                  | ROSTFREIER<br>STAHL | Zugkraft  | Standard Gewindestück           | N <sub>Rd</sub> | [kN] | 11,1        | 14,9        | 21,8        | 32,1        | 50,4        | 70,3         |              | 69,1         |
|                    | OSTI<br>ST,         |           | h <sub>ef,max</sub> = 20d       | N <sub>Rd</sub> | [kN] | <u>13,6</u> | <u>21,5</u> | <u>31,0</u> | <u>57,8</u> | <u>90,5</u> | <u>130,0</u> | 141,7        | 148,1        |
|                    | ~                   | Querkraft | Alle Tiefen                     | $V_{Rd}$        | [kN] | <u>8,3</u>  | <u>12,8</u> | <u>19,2</u> | <u>35,2</u> | <u>55,1</u> | <u>79,4</u>  | <u>103,2</u> | <u>125,6</u> |
|                    |                     |           | h <sub>ef,min</sub> = 8d        | N <sub>Rd</sub> | [kN] |             | 6,2         | 9,0         | 16,0        | 22,3        | 32,1         |              |              |
|                    | Ā                   | Zugkraft  | Standard Gewindestück           | N <sub>Rd</sub> | [kN] |             | 7,0         | 10,3        | 16,0        | 23,7        | 35,1         |              |              |
| NO.                | VERZINKT            |           | h <sub>ef,max</sub> = 20d       | N <sub>Rd</sub> | [kN] |             | 15,7        | 22,6        | 40,2        | 55,8        | 80,4         |              |              |
| I BET              | \<br>B              | Querkraft | Alle Tiefen 5.8                 | $V_{Rd}$        | [kN] |             | <u>12,0</u> | <u>16,8</u> | <u>31,2</u> | <u>48,8</u> | <u>70,4</u>  |              |              |
| NE                 |                     | Querkiait | Alle Tiefen 8.8                 | $V_{Rd}$        | [kN] |             | <u>18,4</u> | <u>27,2</u> | <u>50,4</u> | <u>78,4</u> | <u>112,8</u> |              |              |
| GERISSENEN BETON   | 4                   |           | h <sub>ef,min</sub> = 8d        | N <sub>Rd</sub> | [kN] |             | 6,2         | 9,0         | 16,0        | 22,3        | 32,1         |              |              |
| GEI                | STFREIE             | Zugkraft  | Standard Gewindestück           | N <sub>Rd</sub> | [kN] |             | 7,0         | 10,3        | 16,0        | 23,7        | 35,1         |              |              |
|                    | ROSTFREIER<br>STAHL |           | h <sub>ef,max</sub> = 20d       | N <sub>Rd</sub> | [kN] |             | 15,7        | 22,6        | 40,2        | 55,8        | 80,4         |              |              |
|                    | ~                   | Querkraft | Alle Tiefen                     | $V_{Rd}$        | [kN] |             | <u>12,8</u> | <u>19,2</u> | <u>35,2</u> | <u>55,1</u> | <u>79,4</u>  |              |              |

Ref. **FT MOH-de** Rev: 7 **24/02/25 8** von **12** 



| EMF                | PFOHLE              | NE MAXIN  | IALLASTEN (when γ <sub>F</sub> = | 1.4)             |      |             |              |              |              |              |              |              |              |
|--------------------|---------------------|-----------|----------------------------------|------------------|------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| TYPE BETON         |                     |           | DURCHMESSER                      |                  |      | M8          | M10          | M12          | M16          | M20          | M24          | M27          | M30          |
|                    |                     |           | h <sub>ef,min</sub> = 8d         | N <sub>rec</sub> | [kN] | 6,3         | 9,4          | 13,6         | 22,9         | 33,9         | 45,9         | 40,5         | 42,3         |
|                    | _                   | Zugkraft  | Standard Gewindestück            | N <sub>rec</sub> | [kN] | 7,9         | 10,6         | 15,6         | 22,9         | 36,0         | 50,2         |              | 49,3         |
| NO                 | VERZINKT            | Zugkiait  | h <sub>ef,max</sub> = 20d - 5.8  | N <sub>rec</sub> | [kN] | <u>8,5</u>  | <u>13,8</u>  | <u>20,0</u>  | <u>37,6</u>  | <u>58,5</u>  | <u>84,2</u>  | 101,2        | 105,7        |
| UNGERISSENEN BETON | VERZ                |           | h <sub>ef,max</sub> = 20d - 8.8  | N <sub>rec</sub> | [kN] | <u>13,8</u> | <u>21,9</u>  | <u>31,9</u>  | 57,4         | 84,7         | 114,8        | 101,2        | 105,7        |
| NEN                |                     | Querkraft | Alle Tiefen 5.8                  | $V_{\text{rec}}$ | [kN] | <u>5,1</u>  | <u>8,5</u>   | <u>12,0</u>  | 22,2         | <u>34,8</u>  | <u>50,2</u>  | <u>65,7</u>  | <u>80,0</u>  |
| IISSE              |                     | Queikiait | Alle Tiefen 8.8                  | V <sub>rec</sub> | [kN] | <u>8,5</u>  | <u>13,1</u>  | <u>19,4</u>  | <u>36,0</u>  | <u>56,0</u>  | <u>80,5</u>  | <u>105,1</u> | <u>128,0</u> |
| IGER               | æ                   |           | h <sub>ef,min</sub> = 8d         | N <sub>rec</sub> | [kN] | 6,3         | 9,4          | 13,6         | 22,9         | 33,9         | 45,9         | 40,5         | 42,3         |
| 5                  | STFREIE             | Zugkraft  | Standard Gewindestück            | $N_{\text{rec}}$ | [kN] | 7,9         | 10,6         | 15,6         | 22,9         | 36,0         | 50,2         |              | 49,3         |
|                    | ROSTFREIER<br>STAHL |           | h <sub>ef,max</sub> = 20d        | N <sub>rec</sub> | [kN] | <u>9,77</u> | <u>15,41</u> | <u>22,18</u> | <u>41,35</u> | <u>64,66</u> | <u>92,86</u> | 101,2        | 105,7        |
|                    | ď                   | Querkraft | Alle Tiefen                      | V <sub>rec</sub> | [kN] | <u>5,95</u> | <u>9,16</u>  | <u>13,74</u> | <u>25,18</u> | <u>39,38</u> | <u>56,78</u> | <u>73,72</u> | <u>89,74</u> |
|                    |                     |           | h <sub>ef,min</sub> = 8d         | N <sub>rec</sub> | [kN] |             | 4,4          | 6,4          | 11,4         | 15,9         | 22,9         |              |              |
|                    | Ā                   | Zugkraft  | Standard Gewindestück            | N <sub>rec</sub> | [kN] |             | 5,0          | 7,4          | 11,4         | 16,9         | 25,1         |              |              |
| N 0                | VERZINKT            |           | h <sub>ef,max</sub> = 20d        | N <sub>rec</sub> | [kN] |             | 11,2         | 16,1         | 28,7         | 39,8         | 57,4         |              |              |
| BET                | VE                  | Querkraft | Alle Tiefen 5.8                  | V <sub>rec</sub> | [kN] |             | <u>8,5</u>   | <u>12,0</u>  | 22,2         | <u>34,8</u>  | <u>50,2</u>  |              |              |
| GERISSENEN BETON   |                     | Querkrait | Alle Tiefen 8.8                  | V <sub>rec</sub> | [kN] |             | <u>13,1</u>  | <u>19,4</u>  | <u>36,0</u>  | <u>56,0</u>  | <u>80,5</u>  |              |              |
| SISSE              | <u>~</u>            |           | h <sub>ef,min</sub> = 8d         | N <sub>rec</sub> | [kN] |             | 4,4          | 6,4          | 11,4         | 15,9         | 22,9         |              |              |
| GEF                | STFREIE             | Zugkraft  | Standard Gewindestück            | N <sub>rec</sub> | [kN] |             | 5,0          | 7,4          | 11,4         | 16,9         | 25,1         |              |              |
|                    | ROSTFREIER<br>STAHL |           | h <sub>ef,max</sub> = 20d        | N <sub>rec</sub> | [kN] |             | 11,2         | 16,1         | 28,7         | 39,8         | 57,4         |              |              |
|                    | œ.                  | Querkraft | Alle Tiefen                      | $V_{rec}$        | [kN] |             | <u>9,16</u>  | <u>13,74</u> | <u>25,18</u> | <u>39,38</u> | <u>56,78</u> |              |              |

1 KN  $\approx$  100 kg

Die unterstrichenen und kursiv gesetzten Werte weisen auf Stahlversagen hin. Die übrigen Werte zeigen Versagen durch Herausziehen an.

Ref. **FT MOH-de** Rev: 7 **24/02/25 9** von **12** 



| ERHÖHUNGSFAKTOR FÜR DIE ZUGLAST IN BETON MIT HOHER FESTIGKEIT |                                            |  |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------|--------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| BETON KLASSE                                                  | BETON KLASSE C30/37 C40/50 C50/60          |  |  |  |  |  |  |  |  |  |  |
| Ψ <sub>c</sub> (UNGERISSENEN)                                 | $Ψ_c$ (UNGERISSENEN) 1,00 1,00 1,00        |  |  |  |  |  |  |  |  |  |  |
| $\Psi_c$ (GERISSENEN)                                         | Ψ <sub>c</sub> (GERISSENEN) 1,12 1,23 1,30 |  |  |  |  |  |  |  |  |  |  |

# **6.2 VERANKERUNG IN BACKSTEINEN**

Charakteristische Widerstände Ziegel für einen isolierten Anker (kein Einfluss von Anker- und Randabständen) und Ankerstange der Güteklasse 5.8 oder aus Edelstahl A4-70.

|                   | ••           |       |
|-------------------|--------------|-------|
| CHARAKTERISTISCHE | WIDEDCLVVIDE | / E \ |
| CHARAKIERISTISCHE | WIDERSTAINDE | (FRk) |

| BAUSTOFFE*      | GEWINDEBOLZEN ZUG- UND QUERKRAFT [kN] |     |     |
|-----------------|---------------------------------------|-----|-----|
|                 | M8                                    | M10 | M12 |
| ZIEGEL NUMMER 1 | 0,9                                   | 1,5 | 1,5 |
| ZIEGEL NUMMER 2 | 2                                     | 2   | 2,5 |
|                 |                                       |     |     |

# **BEMESSUNGS WIDERSTÄNDE (FRd)**

| BAUSTOFFE*      | GEWINDEBOLZEN<br>ZUG- UND QUERKRAFT [kN] |     |     |
|-----------------|------------------------------------------|-----|-----|
|                 | M8                                       | M10 | M12 |
| ZIEGEL NUMMER 1 | 0,36                                     | 0,6 | 0,6 |
| ZIEGEL NUMMER 2 | 0,8                                      | 0,8 | 1   |

# EMPFOHLENE MAXIMALLASTEN (Frecom) [when γ<sub>F</sub>= 1.4]

| BAUSTOFFE*                                 | GEWINDEBOLZEN ZUG- UND QUERKRAFT [kN] |      |      |
|--------------------------------------------|---------------------------------------|------|------|
|                                            | M8                                    | M10  | M12  |
| ZIEGEL NUMMER 1                            | 0,26                                  | 0,43 | 0,43 |
| ZIEGEL NUMMER 2                            | 0,57                                  | 0,57 | 0,71 |
| * Development of the C. A. Alexandritt 2.2 |                                       |      |      |

<sup>\*</sup> Backsteintyp siehe S. 4, Abschnitt 3.2.

Ref. **FT MOH-de** Rev: 7 **24/02/25 10** von **12** 



# **6.3 CHEMISCHE BESTÄNDIGKEIT**

Chemische Beständigkeit des Produkts gegen verschiedene spezifische chemische Umgebungen bei einer bestimmten Konzentration.

| Chemische Umgebung                                                          | Konzentration | Ergebnis     | Chemische Umgebung                          | Konzentration | Ergebnis |
|-----------------------------------------------------------------------------|---------------|--------------|---------------------------------------------|---------------|----------|
| Wässrige Lösung, Essigsäure                                                 | 10 %          | ✓            | Hexan                                       | 100 %         | С        |
| Aceton                                                                      | 100 %         | X            |                                             | 10 %          | ✓        |
| Wässrige Lösung, Aluminiumchlorid                                           | Gesättigt     | $\checkmark$ | Salzsäure                                   | 15 %          | ✓        |
| Wässrige Lösung, Aluminiumnitrat                                            | 10 %          | $\checkmark$ |                                             | 25 %          | С        |
| Amoniaklösung                                                               | 5 %           | $\checkmark$ | Schwefelwasserstoffgas                      | 100 %         | ✓        |
| Flugtreibstoff                                                              | 100 %         | ✓            | Isopropylalkohol                            | 100 %         | С        |
| Benzol                                                                      | 100 %         | Х            | Leinöl                                      | 100 %         | ✓        |
| Benzoesäure                                                                 | Gesättigt     | ✓            | Schmieröl                                   | 100 %         | ✓        |
| Benzylalkohol                                                               | 100 %         | Х            | Mineralöl                                   | 100 %         | ✓        |
| Natriumhypochlorit-Lösung                                                   | 5 - 15 %      | С            | Paraffin / Kerosin (für<br>Haushaltszwecke) | 100 %         | ✓        |
| Butylalkohol                                                                | 100 %         | С            | Wässrige Lösung von Phenol                  | 1 %           | X        |
| Wässrige Lösung von Kalziumsulfat                                           | Gesättigt     | $\checkmark$ | Phosphorsäure                               | 50 %          | ✓        |
| Kohlenmonoxid                                                               | Gas           | ✓            | Kaliumhydroxid                              | 10 % / pH13   | С        |
| Tetrachlorkohlenstoff                                                       | 100 %         | ✓            | Meerwasser                                  | 100 %         | ✓        |
| Chlorwasser                                                                 | Gesättigt     | ✓            | Styrol                                      | 100 %         | Х        |
| Chlorbenzol                                                                 | 100 %         | X            | Lösung von Schwefeldioxid                   | 10 %          | ✓        |
| Wässrige Lösung von Zitronensäure                                           | Gesättigt     | ✓            | Schwefeldioxid (40 °C)                      | 5 %           | ✓        |
| Cyclohexanol                                                                | 100 %         | ✓            |                                             | 10 %          | ✓        |
| Diesel-Kraftstoff                                                           | 100 %         | ✓            | Schwefelsäure                               | 50 %          | ✓        |
| Diethylenglycol                                                             | 100 %         | ✓            | Terpentin                                   | 100 %         | С        |
| Ethanol                                                                     | 95 %          | ✓            | Lösungsmittel                               | 100 %         | ✓        |
| Wässrige Lösung von Ethanol                                                 | 20 %          | С            | Xylol                                       | 100 %         | Х        |
| Heptan                                                                      | 100 %         | ✓            | Kontakt nur bis max. 25 °C                  |               | С        |
| Beständig bis 75 °C unter Bewahrung<br>80 % der physikalischen Eigenschafte |               | ✓            | Nicht beständig                             |               | x        |

Ref. **FT MOH-de** Rev: 7 **24/02/25 11** von **12** 



# 7. OFFIZIELLE DOKUMENTATION

Über unseren Kundendienst bzw. auf unserer Webseite www.indexfix.com sind folgende Dokumente erhältlich

- Sicherheitsdatenblatt MOH / MOHW.
- Europäische Technische Zulassung ETA 14/0138 für den Einsatz mit gerissenem und ungerissenem Beton gemäß Leitlinie der EAD 330449-00-0601, Option 1, für M8 bis M30. Bewertung für seismische Lasten C1.
- Europäische Technische Zulassung ETA 13/0785 für den Einbau von nachträglichen Bewehrungsanschlüssen von Ø8 bis Ø25 mm EAD 330087-01-0601.
- Europäische Zulassung ETA 16/0841 für die montage in Mauerwerk nach Leitlinie EAD 330076-00-0604.
- Klasse A+ nach Französischer Verordnung DEVL11044875A über die Emission von flüchtigen Schadstoffen in Innenbereichen.
- ZERTIFIKAT DER NACHHALTIGKEIT LEED.
- Zertifikat WRAS 160454 Unterstützt für die Verwendung in Kontakt mit Trinkwasser Material.
- Zertifikat IBMB (2101/941/16) CM of 24/01/2017 Materialverhalten in Kontakt mit dem Feuer.
- Leistungserklärung DoP MOH.
- Software für Ankerberechnung INDEXcal.
- Software zur Berechnung der Kartuschenanforderungen INDEXmor.

Ref. **FT MOH-de** Rev: 7 **24/02/25 12** von **12**