Ancrage mortier vinylester sans styrène, pour usage sur béton non fissuré

MO-VSF

Homologation ETA Option 7 (béton non fissuré).

INFORMATIONS SUR LE PRODUIT

DESCRIPTION

DOCUMENTATION OFFICIELLE

- ETA 24/0724 option 7, de M8 à M24 pour béton non fissuré.
- ETA 24/0726 pour armatures rapportées.
- ETA 24/725 pour installation sur maçonnerie.
- Certification 1020-CPD-090-063589 pour usage sur béton.
- Certification EVCP 1020-CPR-090-063593 pour armatures rapportées.
- Certification EVCP 1020-CPR-090-063591 pour installation sur maçonnerie.
- Déclaration prestations DoP MO-VSF.

VALIDITÉ POUR

Goujon

Armature rapportée

DIMENSIONS

Goujon M8 - M24 Armatures rapportées Ø8 - Ø16

PLAGE DE CHARGES DE CALCUL

De 7,8 à 48,3 kN (non fissuré).

MATÉRIAU DE BASE

Béton de qualité C20/25 à C50/60 non fissuré.

Brique creuse

HOMOLOGATIONS

- ETA 24/0724 Option 7: Béton non fissuré.
- ETA 24/0726 pour armatures rapportées.
- ETA 24/0725 pour installation sur maçonnerie.

CONDITION DU PERÇAGE

CARACTÉRISTIQUES ET AVANTAGES

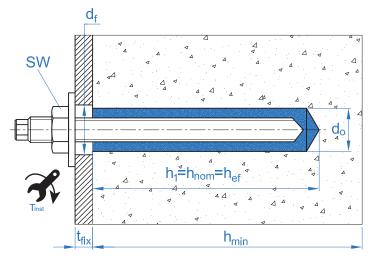
- · Installation facile.
- · Usage sur béton non fissuré,
- · Emploi sur charges élevées.
- Plage de températures de -40 °C à +80 °C (température maximale à long terme +50 °C).
- Variété de longueurs et diamètre : goujons homologués M8-M24, flexibilité lors du montage.
- Pour charges statiques ou quasi-statiques.
- Version en acier zingué, acier inoxydable A2 et A4.
- Disponible en INDEXcal.

MATÉRIAUX

Goujon standard:

Acier au carbone 5.8, 8.8.

Goujon standard inoxydable: Acier inoxydable A2-70 et A4-70.


APPLICATIONS

- Pour usage intérieur et extérieur.
- Applications structurelles.
- · Barrières de sécurité.
- · Fixation de panneaux routiers.
- Fixation de panneaux, machines-outils, chaudières, signalétique, panneaux publicitaires, etc.

		PARAN	IÈTRES D'INS	TALLATION D	ANS LE BÉTO	N		
	MÉTRIQUE		M8	M10	M12	M16	M20	M24
d_0	diamètre nominal	[mm]	10	12	14	18	22	26
d_f	diamètre sur plaque ancrage ≤	[mm]	9	12	14	18	22	26
T _{inst}	couple de serrage ≤	[Nm]	10	20	40	80	150	200
Brosse	e de nettoyage circulaire	Ø	14	Ø	20	Ø	29	
h _{ef,min}	= 8d							
h ₁	profondeur du perçage	[mm]	64	80	96	128	160	192
S _{cr,N}	distance critique entre ancrages	[mm]	192	240	288	384	480	576
C _{cr,N}	distance critique au bord	[mm]	96	120	144	192	240	288
C _{min}	distance minimale au bord	[mm]	35	40	50	65	80	96
S _{min}	distance minimale entre ancrages	[mm]	35	40	50	65	80	96
h _{min}	épaisseur minimale de béton	[mm]	100	110	126	158	204	244
	on standard							
h ₁	profondeur du perçage	[mm]	80	90	110	128	170	210
S _{cr,N}	distance critique entre ancrages	[mm]	240	270	330	384	510	630
C _{cr,N}	distance critique au bord	[mm]	120	135	165	192	255	315
C _{min}	distance minimale au bord	[mm]	43	45	56	65	85	105
S _{min}	distance minimale entre ancrages	[mm]	43	45	56	65	85	105
h _{min}	épaisseur minimale de béton	[mm]	110	120	140	158	214	262
	= 12d							
h ₁	profondeur du perçage	[mm]	96	120	144	192	240	288
S _{cr,N}	distance critique entre ancrages	[mm]	288	360	432	576	720	864
C _{cr,N}	distance critique au bord	[mm]	144	180	216	288	360	432
C _{min}	distance minimale au bord	[mm]	50	60	70	95	120	145
S _{min}	distance minimale entre ancrages	[mm]	50	60	70	95	120	145
h _{min}	épaisseur minimale de béton	[mm]	126	150	174	222	284	340
	goujon zingué 5.8 / 8.8	*	EQAC08110 EQ8808110	EQAC10130 EQ8810130	EQAC12160 EQ8812160	EQAC16190 EQ8816190	EQAC20260 EQ8820260	EQAC24300 EQ8824300
Code	goujon inoxydable A2 / A4	*	EQA208110 EQA408110	EQA210130 EQA410130	EQA212160 EQA412160	EQA216190 EQA416190	EQA220260 EQA420260	EQA224300 EQA424300

	ACCESS	OIRES D'INSTALLATION	PROCÉDURES D'IN
CODE	PRODUIT	MATÉRIAU	BÉTON
MOPISSI		Pistolet pour cartouches de 300 ml	
MOPISTO	PISTOLETS APPLICATION	Pistolet pour cartouches coaxiales de 410 ml, usage professionnel	0
MOPISNEU		Pistolet pneumatique pour cartouches coaxiales de 410 ml, usage professionnel	2 4
EQ-AC EQ-8.8 EQ-A2 EQ-A4	GOUJON	Goujon acier fileté, classe 5.8 ISO 898-1 Goujon acier fileté, classe 8.8 ISO 898-1 Goujons acier inoxydable A2-70 Goujons acier inoxydable A4-70	
MORCEPKIT	BROSSES DE NETTOYAGE	Kit de 3 brosses de nettoyage de ø14, ø20 et ø29 mm	
МОВОМВА	POMPE DE NETTOYAGE	Pompe pour le nettoyage des résidus de poussière et fragments sur le perçage	
MORCANU	CANULE DE MÉLANGE	Plastique. Mélange statique par labyrinthe	

		TEMPS MINIMAL DE DUF	RCISSEMENT	
TYPE	Température de cartouche [°C]	Temps de manipulation [min]	Température matériau de base [°C]	Temps de durcissement [min]
	min +5	18	min +5	145
	+5 a +10	10	+5 a +10	145
MO-VSF	+10 a +20	6	+10 a +20	85
IVIU-V3F	+20 a +25	5	+20 a +25	50
	+25 a +30	4	+25 a +30	40
	+30	4	+30	35

Résistance sur béton C20/25 pour un ancrage isolé, sans effets sur la distance au bord ni la distance entre ancrages, avec un goujon standard EQ-AC, EQ-8.8, EQ-A2 ou EQ-A4.

		Résistano	ce caractéris	tique à la tra	action N _{Rk}							
	Métrique		M8	M10	M12	M16	M20	M24				
$N_{\rm Rk}$	Béton non fissuré	[kN]	14,0	19,7	26,9	41,8	64,0	87,0				
	Résistance de calcul à la traction N _{Rd}											
	Métrique		M8	M10	M12	M16	M20	M24				
$N_{\rm Rd}$	Béton non fissuré	[kN]	7,8	11,0	14,9	23,2	35,6	48,3				
Charge maximale recommandée à la traction N _{rec}												
	Métrique		M8	M10	M12	M16	M20	M24				
$N_{\rm rec}$	Béton non fissuré	[kN]	5,5	7,8	10,7	16,6	25,4	34,5				
Résistance caractéristique au cisaillement V _{Rk}												
	Métrique		M8	M10	M12	M16	M20	M24				
$V_{_{\mathbf{R}\mathbf{k}}}$	Goujon zingué	[kN]	<u>9,0</u>	<u>15,0</u>	<u>21,0</u>	<u>39,0</u>	<u>61,0</u>	<u>88,0</u>				
V Rk	Goujon inoxydable	[kN]	<u>13,0</u>	<u>20,0</u>	<u>30,0</u>	<u>55,0</u>	<u>86,0</u>	<u>124,0</u>				
		Résista	nce de calcu	l au cisaillen	nent V _{Rd}							
	Métrique		M8	M10	M12	M16	M20	M24				
V_{Rd}	Goujon zingué	[kN]	<u>7,2</u>	<u>12,0</u>	<u>16,8</u>	<u>31,2</u>	<u>48,8</u>	<u>70,4</u>				
V Rd	Goujon inoxydable	[kN]	<u>8,3</u>	<u>12,8</u>	<u>19,2</u>	<u>35,3</u>	<u>55,1</u>	<u>79,5</u>				
	Chai	ge maxin	nale recomm	nandée au ci	saillement V	rec						
	Métrique		M8	M10	M12	M16	M20	M24				
$V_{\rm rec}$	Goujon zingué	[kN]	<u>5,1</u>	<u>8,6</u>	<u>12,0</u>	<u>22,3</u>	<u>34,9</u>	<u>50,3</u>				
v rec	Goujon inoxydable	[kN]	<u>6,0</u>	<u>9,2</u>	<u>13,7</u>	<u>25,2</u>	<u>39,4</u>	<u>56,8</u>				
	Profon	deur effec	ctive des gou	ijons EQ-AC	/ EQ-A2 / EC)-A4						
	Métrique		M8	M10	M12	M16	M20	M24				
	Profondeur effective	[mm]	80	90	110	128	170	210				

Les valeurs soulignées et en italique indiquent une rupture de l'acier

Méthode de calcul simplifié. Évaluation Technique Européenne ETA 24/0724

Version simplifiée de la méthode de calcul selon Eurocode 2 EN 1992-4. La résistance se calcule selon les données reflétées dans l'homologation ETA 24/0724.

- Influence de la résistance de béton.
- Influence de la distance au bord du béton.
- Influence de la distance entre ancrages.
- Influence des armatures.
- Influence de l'épaisseur du matériau de base.
- Influence de l'angle d'application de la charge.
- Influence de la profondeur effective.
- Valable pour un groupe de deux ancrages.
- · Valable pour perçages secs ou humides.

La méthode de calcul est fondée sur la simplification suivante : Aucune charge différente n'agit sur des ancrages individuels, sans excentricité.

INDEXcal

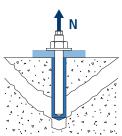
Pour un calcul plus précis qui prenne en compte d'autres dispositions de construction, nous recommandons l'usage de notre programme de calcul INDEXcal. Il est librement téléchargeable à partir de notre site www.indexfix.com

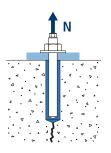
CHARGES DE TRACTION

• Résistance de calcul de l'acier :

Résistance de calcul par extraction : $N_{Rd,p} = N^o_{Rd,p} \cdot \Psi_c \cdot \Psi_{hef,p}$ Résistance de calcul par cône béton : $N_{Rd,c} = N^o_{Rd,c} \cdot \Psi_b \cdot \Psi_{s,N} \cdot \Psi_{c,N} \cdot \Psi_{re,N} \cdot \Psi_{hef,N}$ Résistance de calcul par fissuration du béton : $N_{Rd,sp} = N^o_{Rd,c} \cdot \Psi_b \cdot \Psi_{s,sp} \cdot \Psi_{c,sp} \cdot \Psi_{re,N} \cdot \Psi_{h,sp} \cdot \Psi_{hef,N}$

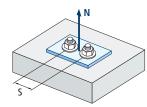
MO-VSF


	Résistance de calcul de l'acier										
	$N_{Rd,s}$										
	Métrique		M8	M10	M12	M16	M20	M24			
	Acier classe 5.8	[kN]	12,0	19,3	28,0	52,7	82,0	118,0			
NIO	Acier classe 8.8	[kN]	19,3	30,7	44,7	84,0	130,7	188,0			
N° Rd,s	Acier classe 10.9	[kN]	27,8	43,6	63,2	118,0	184,2	265,4			
	Acier inox. Classe A2-70, A4-70	[kN]	13,9	21,9	31,6	58,8	92,0	132,1			

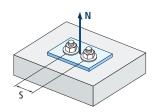

	Résistance de calcul par extraction									
	$N_{Rd,p} = N_{Rd,p}^{\circ} \cdot \Psi_{c} \cdot \Psi_{hef,p}$									
	Métrique		M8	M10	M12	M16	M20	M24		
$N^{o}_{_{Rd,p}}$	Béton non fissuré	[kN]	7,8	11,0	15,0	23,2	35,6	48,4		

	Résistance de calcul par cône béton										
	$N_{Rd,c} = N^{\circ}_{Rd,c} \cdot \Psi_{b} \cdot \Psi_{s,N} \cdot \Psi_{c,N} \cdot \Psi_{re,N} \cdot \Psi_{hef,N}$										
	Métrique		M8	M10	M12	M16	M20	M24			
$N^o_{\ Rd,c}$	Béton non fissuré	[kN]	19,6	23,3	31,5	39,6	60,6	83,2			

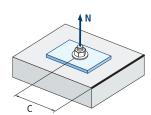
	Résistance de calcul par fissuration du béton										
	$N_{Rd,sp} = N_{Rd,c}^{\circ} \cdot \Psi_b \cdot \Psi_{s,sp} \cdot \Psi_{c,sp} \cdot \Psi_{re,N} \cdot \Psi_{h,sp} \cdot \Psi_{hef,N}$										
	Métrique			M8	M10	M12	M16	M20	M24		
N° Béton non fissuré				19,6	23,3	31,5	39,6	60,6	83,2		


Coefficients d'influence

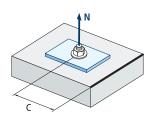
Influence de la résistance de béton pour extraction $\Psi_{_{c}}$									
	Type de béton	C20/25	C30/37	C40/50	C50/60				
Ψ,	Béton non fissuré	1,00	1,10	1,18	1,25				


$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \geq 1$$

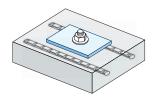
	Influence de la résistance de béton pour cône béton et fissuration du béton $\Psi_{_{\! b}}$											
	Type de béton	C40/50	C50/60									
Ψ		1,00	1,22	1,41	1,55							


	Influence distance entre ancrages (cône béton) $\Psi_{s,N}$											
S/S _{cr,N}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0		
$\Psi_{s,N}$	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00		

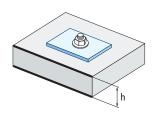
$$\Psi_{s,N} = 0.5 \left(1 + \frac{s}{S_{crN}}\right) \le 1$$


			Influence	distance	entre ancr	ages (fissu	ıration) Ψ $_{s}$	sp		
S/S _{cr,sp}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
Ψ _{s,sp}	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00

$$\Psi_{s,sp} = 0.5 \left(1 + \frac{s}{S_{cr,sp}} \right) \le 1$$

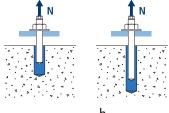

	Influence distance au bord béton (cône béton) $\Psi_{c,N}$											
c/C _{cr,N}	0,1	0,2	0,3	0,5	0,6	0,8	0,9	1,1	1,2	1,4	1,5	1,6
$\Psi_{c,N}$	0,40	0,46	0,51	0,45	0,49	0,55	0,61	0,67	0,75	0,83	0,91	1,00

$$\Psi_{c,N} = 0.35 + \frac{0.5 \cdot c}{C_{cr,N}} + \frac{0.15 \cdot c^2}{C_{cr,N}^2} \le 1$$

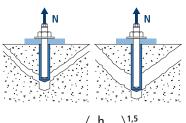

	Influence distance au bord béton (fissuration) $\Psi_{\sf c,sp}$											
c/C _{cr,sp}	0,1	0,2	0,3	0,5	0,6	0,8	0,9	1,1	1,2	1,4	1,5	1,6
$\Psi_{c,sp}$	0,40	0,46	0,51	0,45	0,49	0,55	0,61	0,67	0,75	0,83	0,91	1,00

$$\Psi_{c,sp} = 0.35 + \frac{0.5 \cdot c}{C_{cr,sp}} + \frac{0.15 \cdot c^2}{C_{cr,sp}^2} \le 1$$

Influence des armatures $\Psi_{r_{e,N}}$										
h _{ef} (mm)	64	70	80	90	100					
$\psi_{_{re,N}}$	0,82	0,85	0,90	0,95	1,00					


$$\Psi_{re,N} = 0.5 + \frac{h_{ef}}{200} \le 1$$

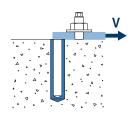
	Influence de l'épaisseur du matériau de base $\Psi_{ extstyle{h,sp}}$										
Ψ	h/h _{ef}	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	3,60	3,68
h,sp	fh	1,00	1,07	1,13	1,19	1,25	1,31	1,37	1,42	1,48	1,50


$$\Psi_{h,sp} = \left(\frac{h}{2 \cdot h_{ef}}\right)^{2/3} \le 1.5$$

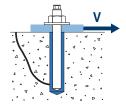
	Influence de	la profondeur e	ffective pour co	mbinaison d'ex	traction $\Psi_{_{hef,p}}$	
Métrique h _{ef}	M8	M10	M12	M16	M20	M24
64	0,80					
80	1,00	0,89				
90	1,13	1,00	0,82	V	leur non admi	ico
96	1,20	1,07	0,87	Vo	ileui iloli aulii	se
110		1,22	1,00			
120		1,33	1,09			
128			1,16	1,00		
144			1,31	1,13		
160				1,25	0,94	
170				1,33	1,00	
192				1,50	1,13	0,91
210	Va	leur non admi	ise		1,24	1,00
240					1,41	1,14
288						1,37

Ψ –	h_{ef}
hef,p	h_{stand}

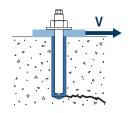
Influence de la profondeur effective pour cône béton $\Psi_{ ext{hef,N}}$										
Métrique h _{ef}	M8	M10	M12	M16	M20	M24				
64	0,72									
80	1,00	0,84								
90	1,19	1,00		Va	leur non admi	se				
96	1,31	1,10	0,82							
110	1,61	1,35	1,00							
120	1,84	1,54	1,14	0,91						
128	2,02	1,70	1,26	1,00	0,65					
144		2,02	1,50	1,19	0,78					
160		2,37	1,75	1,40	0,91	0,67				
170		2,60	1,92	1,53	1,00	0,73				
192			2,31	1,84	1,20	0,87				
210	Valous no	on admise	2,64	2,10	1,37	1,00				
240	valeur no	ni aumise	3,22	2,57	1,68	1,22				
288				3,38	2,21	1,61				



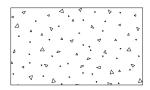
$$\Psi_{\text{hef,N}} = \left(\frac{h_{\text{ef}}}{h_{\text{stand}}}\right)^{1,5}$$



CHARGE DE CISAILLEMENT

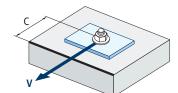

- Résistance de calcul de l'acier sans effet de levier : $V_{\text{Rd,s}}$
- Résistance de calcul par écaillage : $V_{Rd,cp} = k \cdot N^o_{Rd,c}$ Résistance de calcul par bord de béton : $V_{Rd,c} = V^o_{Rd,c} \cdot \Psi_b \cdot \Psi_{se,V} \cdot \Psi_{c,V} \cdot \Psi_{re,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{h,V}$

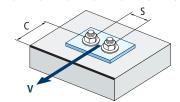
	Résistance de calcul de l'acier au cisaillement										
	$V_{Rd,s}$										
	Métrique		M8	M10	M12	M16	M20	M24			
	Acier classe 5.8	[kN]	7,2	12	16,8	31,2	48,8	70,4			
1/0	Acier classe 8.8	[kN]	12	18,4	27,2	50,4	78,4	112,8			
$V_{\text{Rd,s}}^{\text{o}}$	Acier classe 10.9	[kN]	12	19,3	28	52,7	82	118			
	Acier inox. Classe A2-70, A4-70	[kN]	8,3	12,8	19,2	35,3	55,1	79,5			



Résistance de calcul par écaillage									
$V_{Rd,cp} = k \cdot N_{Rd,c}^{\circ}$									
Métrique M8 M10 M12 M16 M20 M24									
k			2	2					

	Résistance de calcul par bord de béton									
	$V_{Rd,c} = V_{Rd,c}^{\circ} \cdot \Psi_b \cdot \Psi_{se,V} \cdot \Psi_{c,V} \cdot \Psi_{re,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{h,V}$									
Métrique M8 M10 M12 M16 M20 M24							M24			
$V_{\rm Rd,c}^{\rm o}$	Béton non fissuré		[kN]	5,7	8,6	11,8	19,0	28,3	36,4	

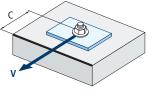

Coefficients d'influence



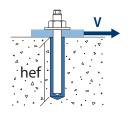
$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \geq 1$$

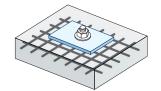
Influence de la résistance de béton pour cône béton et fissuration du béton $\Psi_{_{\! b}}$											
Type de béton	C20/25	C30/37	C40/50	C50/60							
$\Psi_{_{\mathbf{h}}}$	1,00	1,22	1,41	1,55							

	Influence de la distance au bord et distance entre ancrages $\Psi_{se,v}$																	
								Po	ur un a	ncrage	2							
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	Isolé	0,35	0,65	1,00	1,40	1,84	2,32	2,83	3,38	3,95	4,56	5,20	5,86	6,55	7,26	8,00	9,55	11,18
								Pou	r deux	ancrag	es							
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	1,0	0,24	0,43	0,67	0,93	1,22	1,54	1,89	2,25	2,64	3,04	3,46	3,91	4,37	4,84	5,33	6,36	7,45
	1,5	0,27	0,49	0,75	1,05	1,38	1,74	2,12	2,53	2,96	3,42	3,90	4,39	4,91	5,45	6,00	7,16	8,39
s/c	2,0	0,29	0,54	0,83	1,16	1,53	1,93	2,36	2,81	3,29	3,80	4,33	4,88	5,46	6,05	6,67	7,95	9,32
	2,5	0,32	0,60	0,92	1,28	1,68	2,12	2,59	3,09	3,62	4,18	4,76	5,37	6,00	6,66	7,33	8,75	10,25
	≥ 3.0	0.35	0.65	1.00	1 40	1 84	2 32	2 83	3 38	3 95	4 56	5 20	5.86	6 55	7 26	8 00	9 55	11 18

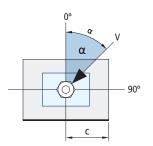


$$\Psi_{se,V} = \left(\frac{c}{h_{ef}}\right)^{1,5} \qquad \qquad \Psi_{se,V} = \left(\frac{c}{h_{ef}}\right)^{1,5} \left(1 + \frac{s}{3 \cdot c}\right) \cdot 0,5 \le \left(\frac{c}{h_{ef}}\right)^{1,5}$$

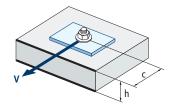

	Influence distance au bord béton $\Psi_{\sf c,v}$											
c/d	4	5	7	10	15	20	25	30				
$\psi_{c,v}$	0,76	0,72	0,68	0,63	0,58	0,55	0,53	0,51				



	Influence de la profondeur effective $\Psi_{ ext{hef,V}}$										
h _{ef} /d	8	9	10	11	12						
$\Psi_{hef,V}$	1,65	2,04	2,47	2,93	3,42						


$$\Psi_{\text{hef,V}} = 0.04 \cdot \left(\frac{h_{\text{ef}}}{d}\right)^{1.79}$$

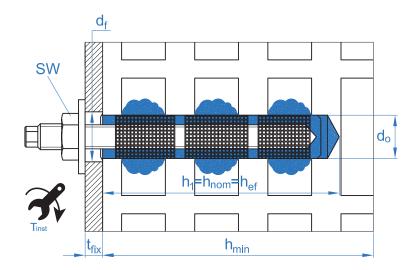
		Influence des armati	Influence des armatures $\Psi_{re,v}$						
		Sans armature périphérique	Armature périphérique ≥Ø12mm	Armature périphérique avec étriers à ≤ 100mm					
$\Psi_{re,v}$	Béton non fissuré	1	1	1					



	Influence de l'angle d'application de la charge $\Psi_{oldsymbol{lpha}_{oldsymbol{arphi}}}$												
Angle, α(°)	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°			
$\Psi_{\alpha,\nu}$	1,00	1,01	1,05	1,13	1,24	1,40	1,64	1,97	2,32	2,50			

w	1	_ 1
'α,ν —	$(\cos\alpha_{\nu})^{2} + \left(\frac{\sin\alpha_{\nu}}{2.5}\right)^{2}$	∠ '

	Influence de l'épaisseur du matériau de base $\Psi_{h,v}$													
h/c	0,15	0,30	0,45	0,60	0,75	0,90	1,05	1,20	1,35	≥1,5				
$\Psi_{_{h,V}}$	0,32	0,45	0,55	0,63	0,71	0,77	0,84	0,89	0,95	1,00				


$$\Psi_{h,V} = \left(\frac{h}{1.5 \cdot c}\right)^{0.5} \ge 1.0$$

FIXATION SUR BRIQUES

	MO-VSF											
	MATÉRIAU DE BASE			Brique n	uméro 1		Ві	rique numéro	2	Brique r	Brique numéro 3	
	TYPE D'ANCRAGE			Installation	sans tamis		Insta	llation avec t	Installation avec tamis			
	DIMENSION			M8	M10	M12	M8	M10	M12	M6	M8	
l _s	Tamis en plastique longueur	[mm]	-	-	-	-	85	85	85	80	80	
d_0	Tamis en plastique diamètre	[mm]	-	-	-	-	16	16	16	12	12	
V	Volume per trou/tamis	[ml]	-	-	-	-	-	-	-	-	-	
d _o	Diamètre de foret	[mm]	8	10	12	14	16	16	16	12	12	
h ₁	Profondeur du perçage ≥	[mm]	80	90	90	90	90	90	90	85	85	
h _{ef}	Profondeur du goujon ≥	[mm]	80	90	90	90	85	85	85	80	80	
h _{nom}	Profondeur inst. tamis plastique	[mm]	-	-	-	-	85	85	85	80	80	
d _f	Diamètre sur tôle ≤	[mm]	7	9	12	14	9	12	14	9	9	
T _{ins}	Couple de serrage ≤	[Nm]	2	2	2	2	2	2	2	2	2	
d _b	Brosse circulaire	[mm]	9	14	14	14	20	20	20	14	14	
	Code tamis		,			,	MOTN15085	MOTN15085	MOTN20080	MOTN12080	MOTN12080	

		M6			M8			M10/M12		
Distances minimales et au bord		$C_{cr} = C_{min}$	S _{cr} = S _{min}	$S_{\sigma,\perp}=S_{min,\perp}$	$C_{cr} = C_{min}$	S _{cr} = S _{min}	$S_{cr,\perp} = S_{min,\perp}$	C _{cr} = C _{min}	S _{cr II} = S _{min II}	$S_{\sigma^{\perp}} = S_{\min^{\perp}}$
Brique numéro 1	[mm]	120	240	240	135	270	270	135	270	270
Brique numéro 2 [mm] Brique numéro 3 [mm]		-	-	-	100	373	238	100	373	238
		100	245	110	100	245	110	-	-	-

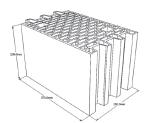
	ACCESSO	DIRES D'INSTALLATION				
CODE	PRODUIT	MATÉRIAU				
MOPISSI		Pistolet pour cartouches de 300 ml				
MOPISTO	PISTOLETS APPLICATION	Pistolet pour cartouches coaxiales de 410 ml, usage professionnel				
MOPISNEU		Pistolet pneumatique pour cartouches coaxiales de 410 ml, usage professionnel				
MO-ES	GOUJON	Goujon fileté	→ 4			
MORCEPKIT	BROSSES DE NETTOYAGE	Kit da 3 hroccac da nattovada da a 1/1 a 1/1 at a 1/4 mm				
МОВОМВА	POMPE DE NETTOYAGE	Pompe pour le nettoyage des résidus de poussière et fragments sur le perçage				
MORCANU	CANULE DE MÉLANGE	Plastique. Mélange statique par labyrinthe				
MO-TN	TAMIS NYLON	Plastique couleur blanc ou gris				
МО-ТМ	TAMIS MÉTALLIQUE	Tamis métallique ø12, ø16 et ø22 mm				

		TEMPS MINIMAL DE DURC	CISSEMENT	
TYPE	Température cartouche [°C]	Temps de manipulation [min]	Température matériau de base [°C]	Temps de durcissement [min]
	min +5	18	min +5	145
	+5 a +10	10	+5 a +10	145
MO VCE	+10 a +20	6	+10 a +20	85
MO-VSF	+20 a +25	5	+20 a +25	50
	+25 a +30	4	+25 a +30	40
	+30	4	+30	35

	Résistances caractéristiques (F _{Rk})											
Anchrage typ	oe .	Goujons filetés. Traction et cisaillement [kN]										
Conditions d'us	sage		d/d,	w/d		w/w						
Matériau de base	Tamis	M6	M8	M10	M12	M6	M8	M10	M12			
Brique numéro 1	-	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5			
Brique numéro 2	Ø16 x 85	-	1,5	1,5	1,5	-	1,5	1,5	1,5			
Brique numéro 3	Ø12 x 80	1,2	1,2	-	-	0,9	0,9	-	-			

Résistances de calcul (F _{Rd})											
Anchrage typ	oe		Goujons filetés. Traction et cisaillement [kN]								
Conditions d'us	sage		d/d,	w/d		w/w					
Matériau de base	Tamis	M6	M8	M10	M12	M6	M8	M10	M12		
Brique numéro 1	-	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6		
Brique numéro 2	Ø16 x 85	-	0,6	0,6	0,6	-	0,6	0,6	0,6		
Brique numéro 3	Ø12 x 80	0,48	0,48	-	-	0,36	0,36	-	-		

Charges maximales recommandées (F_{recom}) (avec $\gamma F=1,4$)									
Conditions d'u	Conditions d'usage d/d, w/d w/w								
Matériau de base	Tamis	M6	M8	M10	M12	M6	M8	M10	M12
Brique numéro 1	-	0,43	0,43	0,43	0,43	0,43	0,43	0,43	0,43
Brique numéro 2	Ø16 x 85	-	0,43	0,43	0,43	-	0,43	0,43	0,43
Brique numéro 3	Ø12 x 80	0,34	0,34	-	-	0,26	0,26	-	-



TYPES DE BRIQUES

Brique nº 1

Brique pleine en argile cuite Mz 12-2,0-NF conformément à EN 771-1 Longueur / largeur / hauteur: 240 mm / 116 mm / 71 mm fb b \geq 12 N/mm² / $\rho \geq$ 2,0 kg/dm³

Brique n° 2

Brique creuse en céramique Porotherm 25 P+W KL15 conformément à EN 771-1

Longueur / largeur / hauteur: 373 mm / 250 mm / 238 mm fb b \geq 12 N/mm² / $\rho \geq$ 0,9 kg/dm³

Brique nº 3

Brique perforée en terre cuite 10 conformément à EN 771-1 Longueur / largeur / hauteur: 245 mm / 110 mm / 100 mm fb b \geq 15 N/mm² / ρ \geq 2,05 kg/dm³

SCELLEMENTS D'ARMATURES RAPPORTÉES

Ce document technique concerne les scellements d'armatures rapportées en béton non carbonaté selon l'hypothèse que les scellements d'armatures rapportées sont généralement calculés conformément à l'Eurocode 2. Le système d'ancrage avec fer à béton comprend l'adhérence du matériau et une armature de renfort encastrée droite conforme aux propriétés spécifiées par l'Eurocode 2, Annexe C; classes B et C.

Les charges dynamiques, de fatigue ou sismiques sur les scellements d'armatures rapportées ne sont pas comprises dans ce document technique.

Usage prévu

Ce document technique concerne l'application sur béton non carbonaté uniquement à partir de C12/15 jusqu'à C50/60 (EN 206) pour les applications suivantes :

- Union à recouvrement avec une armature existante sur un composant de construction (Figures 1 et 4).
- Fixation d'armature sur une dalle ou sur un support. Appui sur une extrémité d'une dalle calculée comme simplement appuyée tout comme ses armatures pour forces de rétention (Figure 2).
- Fixation d'armature de composants de construction principalement soumis à une compression (Figure 3).
- Fixation d'armature pour recouvrir la ligne d'action de la force de traction (Figure 5).

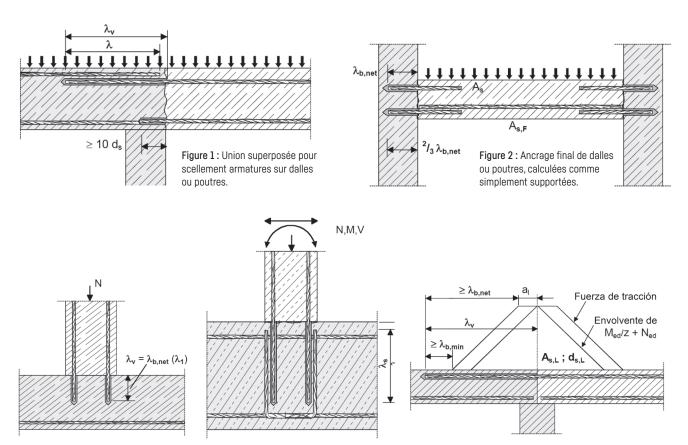


Figure 3 : Scellements d'armatures pour éléments principalement soumis à une compression. Les armatures sont soumises à une compression.

Figure 4 : Union superposée à une fondation d'une colonne ou un mur où les armatures sont soumises à une traction.

Figure 5 : Ancrage de renfort pour recouvrir la ligne d'action de la force de traction.

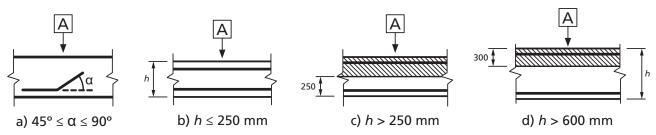
^{*} Note pour les Figures 1 et 5 : Les renforts transversaux n'ont pas été représentés sur les figures, les renforts transversaux doivent être présents, comme stipulé par l'Eurocode 2. Le cisaillement transféré entre le béton de devant et de derrière doit être calculé conformément à l'Eurocode 2.

Les tableaux présentés à suivre se réfèrent à la norme Eurocode 2 Annexe C, Tableau C.1 et C2N, Propriétés des armatures.

Propriétés des fers à béton								
Formulaire du Pro	duit	Armatures et tiges débobinées						
Classe		В С						
Limite élastique caractéristique	f _{yk} ou f _{0,2k} (MPa)	400 8	a 600					
Valariu minimala da k	(f f)	> 1.00	≥ 1,15					
Valeur minimale de k =	$= (T_{t} / T_{y})_{k}$	≥ 1,08	< 1,35					
Déformation caractéristique à la trac	tion maximale $\epsilon_{_{uk}}$ (%)	≥ 5,0	≥ 7,5					
Flexibilité		Test de torsion/flexion						
Déviation maximale du poids nominal (barre individuelle ou fer) (%)	Dimension nominale de l'armature (mm) $\leq 8 > 8$	± 6,0 ± 4,5						
Adhérence : Surface relative minimale de nervure, f _{R.min}	Dimension nominale de l'armature (mm) 8 à 12 > 12	0,0 0,0						

Longueurs maximales et minimales*									
Rebar		Minimum Maximum							
Ød _s [mm]	fy,k [N/mm²]	Anclaje $\ell_{\scriptscriptstyle b,min}$ [mm]	Solape $\ell_{_{0,\min}}$ [mm]	ℓ_{max}					
8	500	114	200	400					
10	500	142	200	500					
12	500	171	200	600					
14	500	199	210	700					
16	500	227	240	800					

^{*}Pour béton C20/25 (fbd = 2,3 N/mm²), bonnes conditions d'adhérence, barres (fyk = 500 N/mm²)


	Resistances de calcul par adherence										
Barre Ø	Resistance			Type du béton							
d _s [mm]	et facteur	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	
8	k _b *	1	1	1	0,86	0,76	0,69	0,63	0,58	0,54	
0	f _{bd,PIR}	1,6	2	2,3							
10 a 16	k _b *	1	1	1	1	0,89	0,8	0,73	0,67	0,63	
10 a 16	f _{bd,PIR}	1,6	2	2,3			2	,7			
	Barre Ø			Footour d'a			Type du béton				
	d _s [mm]			Facteur d'amplification C12/15 hasta C50/60							
	8 a 16			O	X _{Ib}			1	,5		

^{*}Pour toutes les méthodes de perçage avec de bonnes conditions d'adhérence

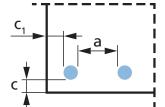
- · Valeurs de charge de calcul conformément à l'Eurocode 2 et au dossier technique TR 023 d'EOTA.
- Informations conformes à ETA 13/0780.
- · Béton non fissuré, conditions à sec ou humide.
- Plage de températures de -40 °C à +80 °C (température maximale à long terme +50 °C).
- Conditions minimales de distance entre barres ≥5d_s, min 50 mm :

- · Recouvrement minimal du béton :
 - perçage à l'air comprimé ≥ 50 + 0,06 Lb
 - perçage en mode percussion ≥ 30 + 0,08 Lb ≥ 2Φ
- Bonnes conditions d'adhérence :

A Direction du bétonnage

a) et b) « bonnes » conditions d'adhérence pour tous les types de barres. c) et d) sans zone nuancée - « bonnes » conditions d'adhérence. Zone nuancée - « faibles » conditions d'adhérence.

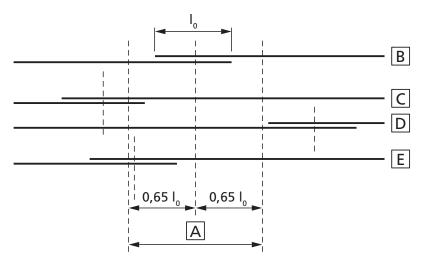
^{*} En cas de faibles conditions d'adhérence, multiplier les valeurs par 0,7.



Les valeurs de résistance peuvent augmenter en fonction des situations suivantes :

- En cas de pression due à une tension/compression transversale (α_a)
- En cas de recouvrement du béton $[\alpha_{_{\! 5}}]$
- En cas de superposition d'armatures $[\alpha_{\mbox{\tiny g}}]$

Valeurs pour $\alpha_{\scriptscriptstyle 2}$, $\alpha_{\scriptscriptstyle 5}$ et $\alpha_{\scriptscriptstyle 6}$							
Facteur d'influence	Barre de renfort						
racteur à minuence	De traction	De compression					
Recouvrement du béton	$\alpha_2 = 1 - 0.15 \text{ (cd} - \emptyset)/\emptyset$ ≥ 0.7 ≤ 1.0	$\alpha_2 = 1.0$					
Confinement par pression transversale	$\alpha_5 = 1 - 0.004p$ ≥ 0.7 ≤ 1.0	$\alpha_{_{5}}=1.0$					
Longueur du chevauchement	$\alpha_6 = (p)$	1,0					


0ù:

 $c_d = min (a/_2, c_1, c)$

p : pression transversale [MPa] en limite ultime I_{bd}

 p_1 est le pourcentage de barre de renfort superposée dans $0.65 \cdot l_0$ à partir du centre de la longueur du chevauchement considéré

A Section considérée

B Barre I C Barre II

D Barre III

E Barre IV

		Classe	de béton 20/	25				
Rés	sistance à	a la compre	ssion du béton [f _c	k,cube]: 25 N/mm²				
Barre Ø	d _s	[mm]	Ø8	Ø10	Ø12	Ø14	Ø16	
Taille de la barre	d _s	[mm]	8	10	12	14	16	
Area de la section transversale	A _s	[mm²]	50,3	78,5	113,1	153,9	201,1	
Limite de rupture de l'acier	f _{yk}	[N/mm ²]	500	500	500	500	500	
Facteur de sécurité	Y _{M,s}	[-]	1,15	1,15	1,15	1,15	1,15	
Limite élastique de l'acier	f _{yd}	[N/mm ²]	434,78	434,78	434,78	434,78	434,78	
Résistance de calcul de l'acier	N _{Rd,s}	[kN]	21,9	34,1	49,2	66,9	87,4	
Résistance de calcul pour adhérence	f _{bd}	[N/mm ²]	2,3	2,3	2,3	2,3	2,3	
Facteur d'amplification pour la longueur d'ancrage minimale	α _{lb}	[-]	1	1	1	1	1	
Longueur d'ancrage de base - Appliquée	l _{b,rqd}	[mm]	0	0	0	0	0	
Longueur d'ancrage de base - Limite d'élasticité	l _{b,rqd,fyd}	[mm]	378,07	472,59	567,11	661,63	756,14	
Longueur d'ancrage minimale	l _{b,min}	[mm]	113,42	141,78	170,13	198,49	226,84	
Longueur de recouvrement minimale	I _{0,min}	[mm]	200	200	200	210	240	
Profondeur d'ancrage maximale autorisée	v,max	[mm]	400	500	600	700	800	
Diamètre du trou de forage	d _h	[mm]	12	14	16	18	20	
Distance entre barres ≥	S	[mm]	50	50	60	70	80	
Distance au borde (Percé par air comprimé) ≥	С	[mm]			50 + 0,06 L _b			
Distance au bord (Percé par percussion) ≥ c [mm]					$30 + 0.08 L_b \ge 2\Phi$	1		
Longueur d'ancrage, L _h [mm]		, ,			ılcul á pull out pou			
114			6,6			Rd		
142			8,2	10,3		Zone non	admissible	
171			9,9	12,4	14,8			
199			11,5	14,4	17,3	20,1		
200			11,6	14,5	17,3	20,2		
210			12,1	15,2	18,2	21,2		
227			13,1	16,4	19,7	23	26,2	
240			13,9	17,3	20,8	24,3	27,7	
300			17,3	21,7	26	30,3	34,7	
350			20,2	25,3	30,3	35,4	40,5	
400			21,9	28,9	34,7	40,5	46,2	
450				32,5	39	45,5	52	
500				34,1	43,4	50,6	57,8	
550 600					47,7 49,2	55,6	63,6	
650					43,2	60,7 65,8	69,4 75,1	
700						66,9	80,9	
750			Zone limite élastique de la barre					
800							86,7 87,4	
Longueur pour atteindre le limite élastique du acier,	L [mm	nl	378	473	567	662	756	

		Classe	de béton 30/	37				
Rés	sistance à	a la compre	ession du béton [f	_{k,cube}]: 37 N/mm²				
Barre Ø	d _s	[mm]	Ø8	Ø10	Ø12	Ø14	Ø16	
Taille de la barre	d _s	[mm]	8	10	12	14	16	
Area de la section transversale	A_s	[mm²]	50,3	78,5	113,1	153,9	201,1	
Limite de rupture de l'acier	f _{yk}	[N/mm ²]	500	500	500	500	500	
Facteur de sécurité	Y _{M,s}	[-]	1,15	1,15	1,15	1,15	1,15	
Limite élastique de l'acier	f _{yd}	[N/mm ²]	434,78	434,78	434,78	434,78	434,78	
Résistance de calcul de l'acier	N _{Rd,s}	[kN]	21,9	34,1	49,2	66,9	87,4	
Résistance de calcul pour adhérence	f _{bd}	[N/mm ²]	2,3	3	3	3	3	
Facteur d'amplification pour la longueur d'ancrage minimale	α_{\parallel_b}	[-]	0,76	0,89	0,89	0,89	0,89	
Longueur d'ancrage de base - Appliquée	l _{b,rqd}	[mm]	0	0	0	0	0	
Longueur d'ancrage de base - Limite d'élasticité	l _{b,rqd,fyd}	[mm]	378,07	362,32	434,78	507,25	579,71	
Longueur d'ancrage minimale	l _{b,min}	[mm]	86,2	96,74	116,09	135,43	154,78	
Longueur de recouvrement minimale	b,min	[mm]	152	178	178	186,9	213,6	
Profondeur d'ancrage maximale autorisée	1	[mm]	400	500	600	700	800	
Diamètre du trou de forage	u _{v,max}	[mm]	12	14	16	18	20	
Distance entre barres ≥	S	[mm]	50	50	60	70	80	
Distance au borde (Percé par air comprimé) ≥	С	[mm]	30	30	50 + 0,06 L _b	, 0	00	
Distance au borde (recé par air comprime) ≥			$30 + 0.08 L_b \ge 2\Phi$					
Longueur d'ancrage, L _b [mm]	С	[mm]			alcul á pull out pou			
Eorigueur d'aricrage, L _b [min]			5	Nesistance de ca	ilcui a puil out pot	ir adrierence, iv _{Rd}		
97			5,6	9,1 Zone non admissible				
117			6,8	11	13,2	Zone non admissible		
136			7,9	12,8	15,4	17,9		
152			8,8	14,3	17,2	20,1		
155			9	14,6	17,5	20,5	23,4	
178			10,3	16,8	20,1	23,5	26,8	
187			10,8	17,6	21,1	24,7	28,2	
214			12,4	20,2	24,2	28,2	32,3	
250			14,5	23,6	28,3	33	37,7	
300			17,3	28,3	33,9	39,6	45,2	
350			20,2	33	39,6	46,2	52,8	
400			21,9	34,1	45,2	52,8	60,3	
450				34,1	49,2	59,4	67,9	
500				34,1	49,2	66	75,4	
550					49,2	66,9	82,9	
600			49,2	66,9	87,4			
650			. In a sure	66,9	87,4			
700			Zone li	mite élastique de l	a barre	66,9	87,4	
750							87,4	
800	J	al .	270	362	435	507	87,4 580	
Longueur pour atteindre le limite élastique du acier,	b,rqd [IIIII	ıj	378			valables pour les joints		

		Classe	de béton 40/	50				
Résistance à la compression du béton [f _{ck,cube}] : 50 N/mm²								
Barre Ø	d_s	[mm]	Ø8	Ø10	Ø12	Ø14	Ø16	
Taille de la barre	d_s	[mm]	8	10	12	14	16	
Area de la section transversale	A_s	[mm²]	50,3	78,5	113,1	153,9	201,1	
Limite de rupture de l'acier	f_{yk}	[N/mm ²]	500	500	500	500	500	
Facteur de sécurité	$\mathbf{Y}_{M,s}$	[-]	1,15	1,15	1,15	1,15	1,15	
Limite élastique de l'acier	f_{yd}	[N/mm ²]	434,78	434,78	434,78	434,78	434,78	
Résistance de calcul de l'acier	$N_{\text{Rd,s}}$	[kN]	21,9	34,1	49,2	66,9	87,4	
Résistance de calcul pour adhérence	f _{bd}	[N/mm ²]	2,3	3,7	3,7	3,7	3,7	
acteur d'amplification pour la longueur d'ancrage minimale	$\alpha_{_{lb}}$	[-]	0,63	0,73	0,73	0,73	0,73	
ongueur d'ancrage de base - Appliquée	l _{b,rqd}	[mm]	0	0	0	0	0	
ongueur d'ancrage de base - Limite d'élasticité	l _{b,rqd,fyd}	[mm]	378,07	293,77	352,53	411,28	470,04	
ongueur d'ancrage minimale	l _{b,min}	[mm]	71,46	73	87,6	102,2	116,8	
ongueur de recouvrement minimale	I _{0,min}	[mm]	126	146	146	153,3	175,2	
Profondeur d'ancrage maximale autorisée	l v,max	[mm]	400	500	600	700	800	
Diamètre du trou de forage	d _h	[mm]	12	14	16	18	20	
oistance entre barres ≥	S	[mm]	50	50	60	70	80	
oistance au borde (Percé par air comprimé) ≥	С	[mm]			50 + 0,06 L _b			
Distance au bord (Percé par percussion) ≥ c [mm]					$30 + 0.08 L_b \ge 2\Phi$)		
Longueur d´ancrage, L _b [mm]				Résistance de ca	alcul á pull out pou	ır adhérence, N _{Rd}		
72			4,2					
73			4,2	8,5		Zone non	admissible	
88			5,1	10,2	12,3			
103			6	12	14,4	16,8		
117			6,8	13,6	16,3	19	21,8	
126			7,3	14,6	17,6	20,5	23,4	
146			8,4	17	20,4	23,8	27,2	
154			8,9	17,9	21,5	25,1	28,6	
176			10,2	20,5	24,5	28,6	32,7	
400			21,9	34,1	49,2	65,1	74,4	
450				34,1	49,2	66,9	83,7	
500				34,1	49,2	66,9	87,4	
550					49,2	66,9	87,4	
600					49,2	66,9	87,4	
650				66,9	87,4			
700				5 71 3		66,9	87,4	
750			Zone li	mite élastique de l	a barre		87,4	
800							87,4	
Longueur pour atteindre le limite élastique du acier,	I Imn	nl	378	294	353	411	470	

		Classe	de béton 50/	00			
Rés	istance à	à la compre	ssion du béton [f _c	k,cube]: 60 N/mm²			
Barre Ø	d_s	[mm]	Ø8	Ø10	Ø12	Ø14	Ø16
Taille de la barre	d_s	[mm]	8	10	12	14	16
Area de la section transversale	A_s	[mm²]	50,3	78,5	113,1	153,9	201,1
imite de rupture de l'acier	f_{yk}	[N/mm ²]	500	500	500	500	500
Facteur de sécurité	Y _{M,s}	[-]	1,15	1,15	1,15	1,15	1,15
Limite élastique de l'acier	f_{yd}	[N/mm ²]	434,78	434,78	434,78	434,78	434,78
Résistance de calcul de l'acier	$N_{\text{Rd,s}}$	[kN]	21,9	34,1	49,2	66,9	87,4
Résistance de calcul pour adhérence	f _{bd}	[N/mm ²]	2,3	4,3	4,3	4,3	4,3
Facteur d'amplification pour la longueur d'ancrage minimale	$\alpha_{_{lb}}$	[-]	0,54	0,63	0,63	0,63	0,63
ongueur d'ancrage de base - Appliquée	l _{b,rqd}	[mm]	0	0	0	0	0
ongueur d'ancrage de base - Limite d'élasticité	l _{b,rqd,fyd}	[mm]	378,07	252,78	303,34	353,89	404,45
ongueur d'ancrage minimale	l _{b,min}	[mm]	61,25	63	75,6	88,2	100,8
ongueur de recouvrement minimale	I _{0,min}	[mm]	108	126	126	132,3	151,2
Profondeur d'ancrage maximale autorisée	l v,max	[mm]	400	500	600	700	800
Diamètre du trou de forage	d _h	[mm]	12	14	16	18	20
Distance entre barres ≥	S	[mm]	50	50	60	70	80
Distance au borde (Percé par air comprimé) ≥	С	[mm]			50 + 0,06 L _b		
Distance au bord (Percé par percussion) ≥ c [mm]					$30 + 0.08 L_b \ge 2\Phi$)	
Longueur d´ancrage, L _b [mm]				Résistance de ca	alcul á pull out pou	ır adhérence, N _{Rd}	
62			3,6				
63			3,6	8,5		Zone non	admissible
76			4,4	10,3	12,3		
89			5,1	12	14,4	16,8	
101			5,8	13,6	16,4	19,1	21,8
108			6,2	14,6	17,5	20,4	23,3
126			7,3	17	20,4	23,8	27,2
133			7,7	18	21,6	25,2	28,7
152			8,8	20,5	24,6	28,7	32,9
400			21,9	34,1	49,2	66,9	86,5
450				34,1	49,2	66,9	87,4
500				34,1	49,2	66,9	87,4
550					49,2	66,9	87,4
600			49,2	66,9	87,4		
650				66,9	87,4		
700			7 "	orter (lood)	. 1	66,9	87,4
750			Zone li	mite élastique de l	a parre		87,4
800							87,4
Longueur pour atteindre le limite élastique du acier,	L [mn	nl	378	253	303	354	404

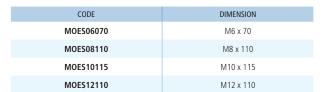
Accessoires pour cartouches d'ancrages chimiques

MO-PIS Pistolets applicateurs

CODE	MODÈLE
MOPISTO	Manuel
MOPISPR	Professionnel 410 ml
MOPISSI	Silicone 300 ml
MOPISNEU	Pneumatique

MO-TN Tamis en plastique

CODE	DIMENSION
MOTN12050	12 x 50
MOTN12080	12 x 80
MOTN15085	15 x 85
MOTN15130	15 x 130
MOTN20085	20 x 85


MO-AC Canules de mélange et divers

CODE	MODÈLE
MOBOMBA	Pompe de soufflage
MORCANU	Canule 300 - 410 ml
MORCEPKIT	Kit 3 brosses

MO-ES Goujon fileté

MO-TM Tamis métallique

CODE	DIMENSION
MOTM12100	12 x 1000
MOTM16100	16 x 1000
MOTM22100	22 x 1000

MO-TR Tamis fileté

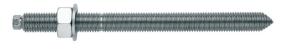
CODE	DIMENSION
MOTRO08	M8/12 x 80
MOTRO10	M10/14 x 80
MOTRO12	M12/16 x 80

Accessoires pour cartouches d'ancrages chimiques

Goujon pour ancrage chimique avec écrou et rondelle

EQ-A2 Inoxydable A2

DIMENSION
M8 x 110
M10 x 130
M10 x 190
M12 x 160
M12 x 220
M16 x 190
M16 x 250
M20 x 260
M20 x 350
M24 x 300
M24 x 380
M30 x 330


CODE	DIMENSION
EQA208110	M8 x 110
EQA210130	M10 x 130
EQA212160	M12 x 160
EQA216190	M16 x 190
EQA220260	M20 x 260
EQA224300	M24 x 300
EQA230330	M30 x 330

EQ-8.8 Zingué 8.8

EQ-A2 Inoxydable A4

CODE	DIMENSION
EQ8808110	M8 x 11040
EQ8810130	M10 x 130
EQ8812160	M12 x 160
EQ8816190	M16 x 190
EQ8820260	M20 x 260
EQ8824300	M24 x 300

CODE	DIMENSION
EQA408110	M8 x 110
EQA410130	M10 x 130
EQA412160	M12 x 160
EQA416190	M16 x 190
EQA420260	M20 x 260
EQA424300	M24 x 300
EQA430330	M30 x 330

Notes