Ancrage mortier polyester universal sans styrène, pour usage sur béton non fissuré et maçonnerie

Homologation ETA Option 7 (béton non fissuré).

INFORMATIONS SUR LE PRODUIT

DESCRIPTION

Ancrage chimique polyester universal sans styrène.

DOCUMENTATION OFFICIELLE

- ETA 24/0872 option 7, de M8 à M16 pour béton non fissuré.
- ETA 24/1141 pour installation sur maçonnerie.
- · Déclaration prestations DoP MO-PSU.
- Certification EVCP 1020-CPR-090-059598 pour usage sur béton.
- Certification EVCP 1020-CPR-090-060246 pour usage sur maconnerie.

VALIDITÉ POUR

Goujon

DIMENSIONS

Goujon M8 - M16

PLAGE DE CHARGES DE CALCUL

De 6,48 à 14,66 kN (non fissuré).

MATÉRIAU DE BASE

Béton de qualité C20/25 à C50/60 non fissuré.

HOMOLOGATIONS

- ETA 24/0872 Option 7: béton non fissuré.
- ETA 24/1141 Maconnerie.

CONDITION DU PERÇAGE

CARACTÉRISTIQUES ET AVANTAGES

- Installation facile.
- Usage sur béton non fissuré, étagères creuses et pleines.
- · Emploi sur charges moyennes.
- Plage de températures de -40 °C à +80 °C (température maximale à long terme +50 °C).
- Variété de longueurs et diamètre : goujons homologués M8-M16, flexibilité lors du montage.
- Pour charges statiques ou quasi-statiques.
- Version en acier zingué, acier inoxydable A2 et A4.
- Résine polyester sans styrène pour tous types de matériaux
- Disponible en INDEXcal.

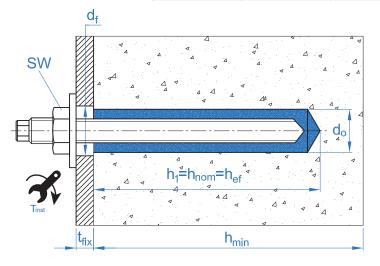
MATÉRIAUX

APPLICATIONS

Goujon standard: Acier au carbone 5.8, 8.8.

Goujon standard inoxydable:

Acier inoxydable A2-70 et A4-70.


Pour usage intérieur et extérieur.

- · Fixation de parements en pierre.
- Rénovation de façades. Fixation de panneaux, supports pour
- climatiseurs, chaudières, stores, panneaux de signalisation, balcons, étagères, balustrades, etc.
- Grandes métriques, murs de contention.
- · Applications structurelles.

	PARAMÈT	RES D'I	NSTALLATION DA	NS LE BÉTON		
	MÉTRIQUE		M8	M10	M12	M16
d_0	diamètre nominal	[mm]	10	12	14	18
d_{f}	diamètre sur plaque ancrage \leq	[mm]	9	12	14	18
T _{inst}	couple de serrage ≤	[Nm]	10	20	40	80
Brosse	de nettoyage circulaire		Ø.	14	Ø.	20
h _{ef,min}	= 8d					
h ₁	profondeur du perçage	[mm]	64	80	96	128
S _{cr,N}	distance critique entre ancrages	[mm]	192	240	288	384
C _{cr,N}	distance critique au bord	[mm]	96	120	144	192
C _{min}	distance minimale au bord	[mm]	35	40	50	70
S _{min}	distance minimale entre ancrages	[mm]	40	40	50	70
h _{min}	épaisseur minimale de béton	[mm]	100	110	126	158
	on standard					
h ₁	profondeur du perçage	[mm]	80	90	110	128
S _{cr,N}	distance critique entre ancrages	[mm]	240	270	330	384
C _{cr,N}	distance critique au bord	[mm]	120	135	165	192
C _{min}	distance minimale au bord	[mm]	35	40	50	70
S _{min}	distance minimale entre ancrages	[mm]	40	40	50	70
$h_{\scriptscriptstylemin}$	épaisseur minimale de béton	[mm]	110	120	140	158
	= 12d					
h ₁	profondeur du perçage	[mm]	96	120	144	192
S _{cr,N}	distance critique entre ancrages	[mm]	288	360	432	576
C _{cr,N}	distance critique au bord	[mm]	144	180	216	288
C _{min}	distance minimale au bord	[mm]	35	40	50	70
S _{min}	distance minimale entre ancrages	[mm]	40	40	50	70
h _{min}	épaisseur minimale de béton	[mm]	126	150	174	222
Code	goujon zingué 5.8 / 8.8		EQAC08110 EQ8808110	EQAC10130 EQ8810130	EQAC12160 EQ8812160	EQAC16190 EQ8816190
Code	goujon inoxydable A2 / A4		EQA208110 EQA408110	EQA210130 EQA410130	EQA212160 EQA412160	EQA216190 EQA416190

	ACCESS	DIRES D'INSTALLATION	PROCÉDURES D'INSTALLATION
CODE	PRODUIT	MATÉRIAU	BÉTON
MOPISSI		Pistolet pour cartouches de 300 ml	
MOPISTO	PISTOLETS APPLICATION	Pistolet pour cartouches coaxiales de 410 ml, usage professionnel	0
MOPISNEU		Pistolet pneumatique pour cartouches coaxiales de 410 ml, usage professionnel	2 6 6 x2
EQ-AC EQ-8.8 EQ-A2 EQ-A4	GOUJON	Goujon acier fileté, classe 5.8 ISO 898-1 Goujon acier fileté, classe 8.8 ISO 898-1 Goujons acier inoxydable A2-70 Goujons acier inoxydable A4-70	3 5 ×2
MORCEPKIT	BROSSES DE NETTOYAGE	Kit de 3 brosses de nettoyage de ø14, ø20 et ø29 mm	10cms.
МОВОМВА	POMPE DE NETTOYAGE	Pompe pour le nettoyage des résidus de poussière et fragments sur le perçage	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
MORCANU	CANULE DE MÉLANGE	Plastique. Mélange statique par labyrinthe	

TEMPS MINIMAL DE DURCISSEMENT										
TYPE	Température cartouche [°C]	Temps de manipulation [min]	Température matériau de base [°C]	Temps de durcissement [min]						
	min +5	18	min +5	160						
	+5 a +10	10	+5 a +10	160						
MO-PSU	+10 a +20	6	+10 a +20	90						
MO-P30	+20 a +25	5	+20 a +25	60						
	+25 a +30	4	+25 a +30	50						
	+30	4	+30	40						

Résistance sur béton C20/25 pour un ancrage isolé, sans effets sur la distance au bord ni la distance entre ancrages, avec un goujon standard EQ-AC, EQ-8.8, EQ-A2 ou EQ-A4.

Résistance caractéristique à la traction $N_{_{Rk}}$										
	Métrique		M8	M10	M12	M16				
N_{Rk}	Béton non fissuré	[kN]	11,7	15,3	19,1	26,4				
Résistance de calcul à la traction N _{Rd}										
	Métrique		M8	M10	M12	M16				
N_{Rd}	Béton non fissuré	[kN]	6,48	8,48	10,60	14,66				
	Cha	arge max	imale recommandé	ée à la traction N _{rec}	:					
	Métrique		M8	M10	M12	M16				
$N_{\rm rec}$	Béton non fissuré	[kN]	4,6	6,1	7,6	10,5				
Résistance caractéristique au cisaillement V _{Rk}										
	Métrique		M8	M10	M12	M16				
	Goujon zingué 5.8	[kN]	<u>9,0</u>	<u>15,0</u>	<u>21,0</u>	<u>39,0</u>				
V_{Rk}	Goujon zingué 8.8	[kN]	<u>15,0</u>	<u>23,0</u>	<u>34,0</u>	<u>63,0</u>				
	Goujon inoxydable (A2/A4)	[kN]	<u>13,0</u>	<u>20,0</u>	<u>30,0</u>	<u>55,0</u>				
		Résista	nce de calcul au ci	saillement V _{Rd}						
	Métrique		M8	M10	M12	M16				
	Goujon zingué 5.8	[kN]	<u>7,2</u>	<u>12,0</u>	<u>16,8</u>	<u>31,2</u>				
V_{Rd}	Goujon zingué 8.8	[kN]	<u>12,0</u>	<u>18,4</u>	<u>27,2</u>	<u>50,4</u>				
	Goujon inoxydable (A2/A4)	[kN]	<u>8,3</u>	<u>12,8</u>	<u>19,2</u>	<u>35,3</u>				
	Char	ge maxin	nale recommandée	au cisaillement V	rec					
	Métrique		M8	M10	M12	M16				
	Goujon zingué 5.8	[kN]	<u>5,1</u>	<u>8,6</u>	<u>12,0</u>	<u>22,3</u>				
V_{rec}	Goujon zingué 8.8	[kN]	<u>8,6</u>	<u>13,1</u>	<u>19,4</u>	<u>36,0</u>				
	Goujon inoxydable (A2/A4)	[kN]	<u>6,0</u>	<u>9,2</u>	<u>13,7</u>	<u>25,2</u>				
	Profond	deur effe	ctive des goujons E	Q-AC / EQ-A2 / EQ)-A4					
	Métrique		M8	M10	M12	M16				
	Profondeur effective	[mm]	80	90	110	128				

Les valeurs soulignées et en italique indiquent une rupture de l'acier

Méthode de calcul simplifié. Évaluation Technique Européenne ETA 24/0872

Version simplifiée de la méthode de calcul selon Eurocode 2 EN 1992-4. La résistance se calcule selon les données reflétées dans l'homologation ETA 24/0872.

- · Influence de la résistance de béton.
- Influence de la distance au bord du béton.
- Influence de la distance entre ancrages.
- · Influence des armatures.
- Influence de l'épaisseur du matériau de base.
- Influence de l'angle d'application de la charge.
- Influence de la profondeur effective.
- Valable pour un groupe de deux ancrages.
- · Valable pour perçages secs ou humides.

La méthode de calcul est fondée sur la simplification suivante : Aucune charge différente n'agit sur des ancrages individuels, sans excentricité.

INDEXcal

Pour un calcul plus précis qui prenne en compte d'autres dispositions de construction, nous recommandons l'usage de notre programme de calcul INDEXcal. Il est librement téléchargeable à partir de notre site www.indexfix.com

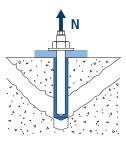
CHARGES DE TRACTION

• Résistance de calcul de l'acier :

 $N_{Rd,p} = N_{Rd,p}^{o} \cdot \Psi_{c} \cdot \Psi_{hef,p}$ • Résistance de calcul par extraction :

 $\begin{array}{ll} \cdot \text{ Résistance de calcul par cône béton:} & N_{\text{Rd,c}} = N_{\text{Rd,c}}^{\circ} \cdot \Psi_{\text{b}} \cdot \Psi_{\text{s,N}} \cdot \Psi_{\text{c,N}} \cdot \Psi_{\text{re,N}} \cdot \Psi_{\text{hef,N}} \\ \cdot \text{ Résistance de calcul par fissuration du béton:} & N_{\text{Rd,sp}} = N_{\text{Rd,c}}^{\circ} \cdot \Psi_{\text{b}} \cdot \Psi_{\text{s,sp}} \cdot \Psi_{\text{c,sp}} \cdot \Psi_{\text{re,N}} \cdot \Psi_{\text{h,sp}} \cdot \Psi_{\text{hef,N}} \\ \end{array}$

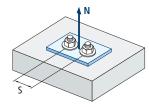
	Résistance de calcul de l'acier								
	$N_{Rd,s}$								
	Métrique		M8	M10	M12	M16			
	Acier classe 5.8	[kN]	12,0	19,3	28,0	52,7			
NIO	Acier classe 8.8	[kN]	19,3	30,7	44,7	84,0			
N° _{Rd,s}	Acier classe 10.9	[kN]	27,8	43,6	63,2	118,0			
	Acier inox. Classe A2-70, A4-70	[kN]	13,9	21,9	31,6	58,8			



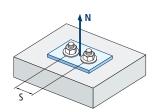
	Résistance de calcul par extraction									
	$N_{Rd,p} = N_{Rd,p}^{\circ} \cdot \Psi_{c} \cdot \Psi_{hef,p}$									
	Métrique	M8	M10	M12	M16					
$N^o_{Rd,p}$	Béton non fissuré	[kN]	6,5	8,5	10,6	14,7				

	Résistance de calcul par cône béton								
	$N_{Rd,c} = N^{\circ}_{Rd,c} \cdot \Psi_{b} \cdot \Psi_{s,N} \cdot \Psi_{c,N} \cdot \Psi_{re,N} \cdot \Psi_{hef,N}$								
	Métrique	M8	M10	M12	M16				
$N^o_{\text{Rd,c}}$	Béton non fissuré	[kN]	19,6	23,3	31,5	39,6			

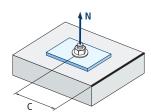
Résistance de calcul par fissuration du béton									
$N_{Rd,sp} = N^o_{Rd,c} \bullet \Psi_b \bullet \Psi_s,sp \bullet \Psi_c,sp \bullet \Psi_re,\mathsf{N} \bullet \Psi_h,\mathsf{sp} \bullet \Psi_hef,\mathsf{N}$									
Métrique		M8	M10	M12	M16				
N° Béton non fissuré	[kN]	19,6	23,3	31,5	39,6				


Coefficients d'influence

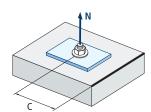
	Influence de la résistance de béton pour extraction $\Psi_{_{c}}$								
Type de béton C20/25 C30/37 C40/50						C50/60			
Ų	Ψ,	Béton non fissuré	1,00	1,04	1,07	1,09			


$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \geq 1$$

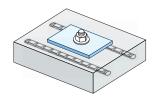
Influence de la résistance de béton pour cône béton et fissuration du béton $\Psi_{_{\! b}}$										
Type de béton C20/25 C30/37 C40/50 C50/60										
$\Psi_{_{ m b}}$	1,00	1,22	1,41	1,55						


Influence distance entre ancrages (cône béton) $\Psi_{s,N}$										
s/s _{cr,N}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
$\Psi_{s,N}$	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00

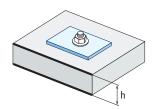
$$\Psi_{s,N} = 0.5 \left(1 + \frac{s}{S_{cr,N}} \right) \le 1$$


Influence distance entre ancrages (fissuration) $\Psi_{\sf s,sp}$										
S/S _{cr,sp}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
Ψ _{s,sp}	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00

$$\Psi_{s,sp} = 0.5 \left(1 + \frac{s}{S_{cr,sp}} \right) \le 1$$

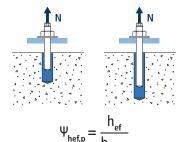

	Influence distance au bord béton (cône béton) $\Psi_{_{c,N}}$											
c/C _{cr,N}	0,1	0,2	0,3	0,5	0,6	0,8	0,9	1,1	1,2	1,4	1,5	1,6
$\Psi_{c,N}$	0,40	0,46	0,51	0,45	0,49	0,55	0,61	0,67	0,75	0,83	0,91	1,00

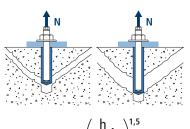
$$\Psi_{c,N} = 0.35 + \frac{0.5 \cdot c}{C_{cr,N}} + \frac{0.15 \cdot c^2}{C_{cr,N}} \le 1$$


	Influence distance au bord béton (fissuration) $\Psi_{\sf c,sp}$											
c/C _{cr,sp}	0,1	0,2	0,3	0,5	0,6	0,8	0,9	1,1	1,2	1,4	1,5	1,6
$\Psi_{c,sp}$	0,40	0,46	0,51	0,45	0,49	0,55	0,61	0,67	0,75	0,83	0,91	1,00

$$\Psi_{c,sp} = 0.35 + \frac{0.5 \cdot c}{C_{cr,sp}} + \frac{0.15 \cdot c^2}{C_{cr,sp}^2} \le 1$$

	Influence des armatures $\Psi_{re,N}$											
h _{ef} (mm)	h _{ef} (mm) 64 70 80 90 100											
$\Psi_{\text{re,N}}$	0,82	0,85	0,90	0,95	1,00							

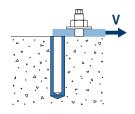

$$\Psi_{re,N} = 0.5 + \frac{h_{ef}}{200} \le 1$$


	Influence de l'épaisseur du matériau de base $\Psi_{ extstyle{h,sp}}$												
Ψ	h/h _{ef}	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	3,60	3,68		
Ψ _{h,sp}	fh	1,00	1,07	1,13	1,19	1,25	1,31	1,37	1,42	1,48	1,50		

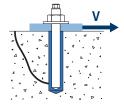
$$\Psi_{h,sp} = \left(\frac{h}{2 \cdot h_{ef}}\right)^{2/3} \le 1.5$$

Infl	uence de la profondeı	ır effective pour comb	inaison d'extraction ዛ	J hef,p					
Métrique h _{ef}	M8	M10	M12	M16					
64	0,80		Valour no	on admise					
80	1,00	0,89	valeul IIC	on admise					
90	1,13	1,00	0,82						
96	1,20	1,07	0,87						
110		1,22	1,00						
120		1,33	1,09						
128			1,16	1,00					
144			1,31	1,13					
160		Valeur non admise							
170									
192		1,50							

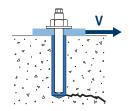
	Influence de la pro	ofondeur effective pou	r cône béton Ψ _{hef,N}	
Métrique h _{ef}	M8	M10	M12	M16
64	0,72			
80	1,00	0,84	Valeur no	on admise
90	1,19	1,00		
96	1,31	1,10	0,82	
110	1,61	1,35	1,00	
120	1,84	1,54	1,14	0,91
128	2,02	1,70	1,26	1,00
144		2,02	1,50	1,19
160		2,37	1,75	1,40
170		2,60	1,92	1,53
192			2,31	1,84
210	Valour no	on admise	2,64	2,10
240	valeur no	iii auiiiise	3,22	2,57
288				3,38



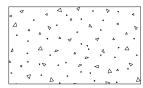
$$\Psi_{\text{hef,N}} = \left(\frac{h_{\text{ef}}}{h_{\text{stand}}}\right)^{1.5}$$



CHARGE DE CISAILLEMENT

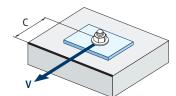

- Résistance de calcul de l'acier sans effet de levier : $V_{\text{Rd,s}}$
- Résistance de calcul par écaillage : $V_{Rd,cp} = k \cdot N^o_{Rd,c}$ Résistance de calcul par bord de béton : $V_{Rd,c} = V^o_{Rd,c} \cdot \Psi_b \cdot \Psi_{se,V} \cdot \Psi_{c,V} \cdot \Psi_{re,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{h,V}$

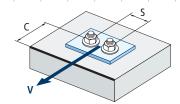
	Résistance de calcul de l'acier au cisaillement									
	V _{Rd,s}									
	Métrique		M8	M10	M12	M16				
	Acier classe 5.8	[kN]	7,2	12	16,8	31,2				
\/0	Acier classe 8.8	[kN]	12	18,4	27,2	50,4				
$V_{Rd,s}^{o}$	Acier classe 10.9	[kN]	12	19,3	28	52,7				
	Acier inox. Classe A2-70, A4-70	[kN]	8,3	12,8	19,2	35,3				



Résistance de calcul par écaillage										
$V_{Rd,cp} = k \cdot N_{Rd,c}^{o}$										
Métrique	M8	M10	M12	M16						
k		2	<u>)</u>							

	Résistance de calcul par bord de béton									
	$V_{Rd,c} = V_{Rd,c}^{\circ} \cdot \Psi_{b} \cdot \Psi_{se,V} \cdot \Psi_{c,V} \cdot \Psi_{re,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{h,V}$									
Métrique	Métrique M8 M10 M12 M16									
V° Rd,c	Béton non fissuré		[kN]	5,7	8,6	11,8	19,0			

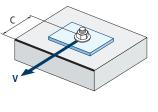

Coefficients d'influence



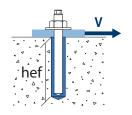
$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \ge 1$$

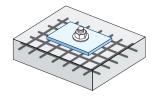
Influence de la résistance de béton pour cône béton et fissuration du béton $\Psi_{_{\! b}}$										
Type de béton C20/25 C30/37 C40/50 C50/60										
$\Psi_{_{\mathbf{b}}}$	1,00	1,22	1,41	1,55						

				Infl	uence	de la	distar	ice au	bord	et dist	ance e	entre a	ancrag	jes Ψ _{se}	,V			
								Po	ur un a	ncrage	9							
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	Isolé	0,35	0,65	1,00	1,40	1,84	2,32	2,83	3,38	3,95	4,56	5,20	5,86	6,55	7,26	8,00	9,55	11,18
								Pou	r deux	ancrag	es							
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	1,0	0,24	0,43	0,67	0,93	1,22	1,54	1,89	2,25	2,64	3,04	3,46	3,91	4,37	4,84	5,33	6,36	7,45
	1,5	0,27	0,49	0,75	1,05	1,38	1,74	2,12	2,53	2,96	3,42	3,90	4,39	4,91	5,45	6,00	7,16	8,39
s/c	2,0	0,29	0,54	0,83	1,16	1,53	1,93	2,36	2,81	3,29	3,80	4,33	4,88	5,46	6,05	6,67	7,95	9,32
	2,5	0,32	0,60	0,92	1,28	1,68	2,12	2,59	3,09	3,62	4,18	4,76	5,37	6,00	6,66	7,33	8,75	10,25
	≥ 3,0	0,35	0,65	1,00	1,40	1,84	2,32	2,83	3,38	3,95	4,56	5,20	5,86	6,55	7,26	8,00	9,55	11,18



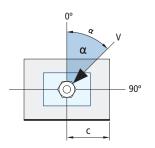
$$\Psi_{se,V} = \left(\frac{c}{h_{ef}}\right)^{1.5} \qquad \qquad \Psi_{se,V} = \left(\frac{c}{h_{ef}}\right)^{1.5} \left(1 + \frac{s}{3 \cdot c}\right) \cdot 0.5 \le \left(\frac{c}{h_{ef}}\right)^{1.5}$$


	Influence distance au bord béton Ψ_{cv}										
c/d	4	5	7	10	15	20	25	30			
$\Psi_{c,V}$	0,76	0,72	0,68	0,63	0,58	0,55	0,53	0,51			

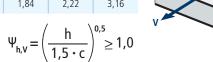


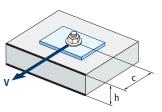
Influence de la profondeur effective $\Psi_{hef,V}$										
h _{ef} /d	8	9	10	11	12					
$\Psi_{hef,V}$	1,65	2,04	2,47	2,93	3,42					

$$\Psi_{\text{hef,V}} = 0.04 \cdot \left(\frac{h_{\text{ef}}}{d}\right)^{1.79}$$



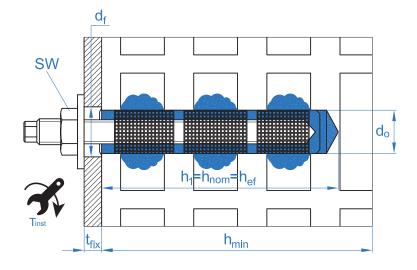
	Influence des armatures $\Psi_{r_{e,v}}$									
		Sans armature périphérique	Armature périphérique ≥Ø12mm	Armature périphérique avec étriers à ≤ 100mm						
Ψ	Béton non fissuré	1	1	1						
Ψ _{re,v}	Béton fissuré	1	1,2	1,4						




	Influence de l'angle d'application de la charge $\Psi_{m{lpha}_{m{ u}}}$									
Angle, α(°)	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°
$\Psi_{\alpha,\nu}$	1,00	1,01	1,05	1,13	1,24	1,40	1,64	1,97	2,32	2,50

$$\Psi_{\alpha,v} = \sqrt{\frac{1}{\left(\cos\alpha_{v}\right)^{2} + \left(\frac{\sin\alpha_{v}}{2.5}\right)^{2}}} \geq 1$$

	Influence de l'épaisseur du matériau de base $\Psi_{\mathtt{h},\mathtt{v}}$									
h/c	0,67	0,75	0,85	0,95	1,10	1,30	1,65	2,25	3,30	6,65
$\Psi_{_{h,V}}$	1,00	1,06	1,13	1,19	1,28	1,40	1,57	1,84	2,22	3,16



FIXATIONS DANS BRIQUES

	MO-PSU													
	MATÉRIAU DE BASE			Brique n	uméro 1			Brique n	uméro 2			Brique numéro 3		
	TYPE D'ANCRAGE			nstallation	avec tami	is	lı	nstallation	avec tam	is	lı	nstallation	sans tam	is
	DIMENSIONS		M6	M8	M10	M12	M6	M8	M10	M12	M6	M8	M10	M12
l _s	Tamis en plastique longueur	[mm]	80	85	85	85	80	80	85	85	-	-	-	-
d_0	Tamis en plastique diamètre	[mm]	12	16	16	16	12	12	16	16	-	-	-	-
V	Volume per trou/tamis	[ml]												
d ₀	Diamètre de foret	[mm]	12	16	16	16	12	12	16	16	8	10	12	14
h ₁	Profondeur du perçage ≥	[mm]	85	90	90	90	85	85	90	90	80	90	90	90
h _{ef}	Profondeur du goujon ≥	[mm]	80	85	85	85	80	80	85	85	80	90	90	90
h _{nom}	Profondeur inst. tamis plastique	[mm]	85	85	85	85	80	80	85	85	-	-	-	-
d _f	Diamètre sur tôle ≤	[mm]	7	9	12	14	9	9	12	14	7	9	12	14
T _{ins}	Couple de serrage ≤	[Nm]	2	2	2	2	2	2	2	2	2	2	2	2
d _b	Brosse circulaire	[mm]	14	14	20	20	14	14	20	20	9	14	14	14
	Code tamis		MOTN12080	MOTN12080	MOTN15085	MOTN20080	MOTN12080	MOTN12080	MOTN15085	MOTN20080	,	,	,	,

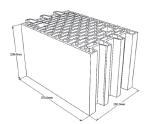
		M6/M8 Tamis Ø12			M8/M10/M12 Tamis Ø16				M6		1				
Distances minimales au bord	et	1	p Im	S _{cr II} = S _{min II}	$S_{cr,\perp} = S_{min,\perp}$		α = min	$S_{crII} = S_{min\;II}$	$S_{cr\perp} = S_{min\perp}$	$C_{cr} = C_{min}$	$S_{crII} = S_{min\;II}$	$S_{cr\perp} = S_{min\perp}$	υ ⁻	Ш	$S_{cr\perp} = S_{min\perp}$
Brique numéro 1	[mm]	10	0	245	110	-	-	-	-	-	-	-	-	-	-
Brique numéro 2	[mm]	-	-	-	-	10	00	373	238	-	-	-	-	-	-
Brique numéro 3	[mm]	-	-	-	-	-	-	-	-	100	245	110	135	270	270

	ACCESSO	DIRES D'INSTALLATION				
CODE	PRODUIT	MATÉRIAU				
MOPISSI		Pistolet pour cartouches de 300 ml				
MOPISTO	PISTOLETS APPLICATION	Pistolet pour cartouches coaxiales de 410 ml, usage professionnel				
MOPISNEU		Pistolet pneumatique pour cartouches coaxiales de 410 ml, usage professionnel				
EQ-AC		Goujon acier fileté, classe 5.8 ISO 898-1				
EQ-A2	GOUJON	Goujons acier inoxydable A2-70				
EQ-A4	Goujons acier inoxydable A4-70					
MORCEPKIT	BROSSES DE NETTOYAGE	Kit da 3 hroccas da nattovada da a1/1 a20 at a20 mm				
МОВОМВА	POMPE DE NETTOYAGE	Pompe pour le nettoyage des résidus de poussière et fragments sur le perçage				
MORCANU	CANULE DE MÉLANGE	Plastique. Mélange statique par labyrinthe				
MO-TN	TAMIS NYLON	Plastique couleur blanc ou gris				
MO-TR	TAMIS MÉTALLIQUE FILETÉ	Tamis métallique fileté M8, M10, M12, zingué				
МО-ТМ	TAMIS MÉTALLIQUE	Tamis métallique ø12, ø16 et ø22 mm				

TEMPS MINIMAL DE DURCISSEMENT									
TYPE	Température cartouche [°C]	Temps de manipulation [min]	Température matériau de base [°C]	Temps de durcissement [min]					
	min +5	18	min +5	160					
	+5 a +10	10	+5 a +10	160					
MO-PSU	+10 a +20	6	+10 a +20	90					
MO-P30	+20 a +25	5	+20 a +25	60					
	+25 a +30	4	+25 a +30	50					
	+30	4	+30	40					

	Résistances caractéristiques (F _{Rk})									
Anchrage typ	oe .	Goujons filetés. Traction et cisaillement [kN]								
Conditions d'us	sage		d/d,	w/d		w/w				
Matériau de base	Tamis	M6	M8	M10	M12	M6	M8	M10	M12	
Brique numéro 1	Ø12 x 80	1,2	1,2	-	-	1,2	1,2	-	-	
Brique numéro 2	Ø16 x 85	-	0,9	1,2	1,2	-	0,9	1,2	1,2	
Brique numéro 3	-	1,2	1,2	1,5	2,0	0,9	0,9	1,5	1,5	

	Résistances de calcul (F _{Rd})											
Anchrage typ	oe e			Goujons filetés. Traction et cisaillement [kN]								
Conditions d'us	age		d/d,	w/d		w/w						
Matériau de base	Tamis	M6	M8	M10	M12	M6	M8	M10	M12			
Brique numéro 1	Ø12 x 80	0,48	0,48	-	-	0,48	0,48	-	-			
Brique numéro 2	Ø16 x 85	-	0,36	0,48	0,48	-	0,36	0,48	0,48			
Brique numéro 3	-	0,48	0,48	0,6	0,8	0,36	0,36	0,6	0,6			


Charges maximales recommandées (F_{recom}) (avec $\gamma F=1,4$)										
Conditions d'us	sage		d/d,	w/d			w	W/W M8 M10 M12 0,34		
Matériau de base	Tamis	M6	M8	M10	M12	M6	M8	M10	M12	
Brique numéro 1	Ø12 x 80	0,34	0,34	-	-	0,34	0,34	-	-	
Brique numéro 2	Ø16 x 85	-	0,26	0,34	0,34	-	0,26	0,34	0,34	
Brique numéro 3	-	0,34	0,34	0,43	0,57	0,26	0,26	0,43	0,43	

TYPES DE BRIQUES

Brique nº 1

Brique perforée en terre cuite 10 conformément à EN 771-1 Longueur / largeur / hauteur: 245 mm / 110 mm / 100 mm fb b \geq 15 N/mm² / $\rho \geq$ 2,05 kg/dm³

Brique n° 2

Brique creuse en céramique Porotherm 25 P+W KL15 conformément à EN 771-1

Longueur / largeur / hauteur: 373 mm / 250 mm / 238 mm fb b \geq 12 N/mm² / $\rho \geq$ 0,9 kg/dm³

Brique nº 3

Brique pleine en argile cuite Mz-NF conformément à EN 771-1 Longueur / largeur / hauteur: 240 mm / 115 mm / 71 mm fb b \geq 20 N/mm² / ρ \geq 1,9 kg/dm³

Accessoires pour cartouches d'ancrages chimiques

MO-PIS Pistolets applicateurs

CODE	MODÈLE
MOPISTO	Manual
MOPISPR	Profesional 410 ml
MOPISSI	Silicona 300 ml
MOPISNEU	Neumática

MO-AC Canules de mélange et divers

CODE	DIMENSION
MOBOMBA	Bomba sopladora
MORCANU	Cánula - 300 - 410 ml
MORCEPKIT	Kit 3 cepillos

MO-TM Tamis métallique

CODE	DIMENSION
MOTM12100	12 x 1000
MOTM16100	16 x 1000
MOTM22100	22 x 1000

MO-TN Tamis en plastique

CODE	DIMENSION
MOTN12050	12 x 50
MOTN12080	12 x 80
MOTN15085	15 x 85
MOTN15130	15 x 130
MOTN20085	20 x 85

MO-ES Goujon fileté

CODE	DIMENSION
MOES06070	M6 x 70
MOES08110	M8 x 110
MOES10115	M10 x 115
MOES12110	M12 x 110

MO-TR Tamis fileté

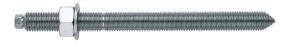
CODE	DIMENSION
MOTRO08	M8/12 x 80
MOTRO10	M10/14 x 80
MOTRO12	M12/16 x 80

Accessoires pour cartouches d'ancrages chimiques

Goujon pour ancrage chimique avec écrou et rondelle

CODE	DIMENSION
EQAC08110	M8 x 110
EQAC10130	M10 x 130
EQAC10190	M10 x 190
EQAC12160	M12 x 160
EQAC12220	M12 x 220
EQAC16190	M16 x 190
EQAC16250	M16 x 250
EQAC20260	M20 x 260
EQAC20350	M20 x 350
EQAC24300	M24 x 300
EQAC24380	M24 x 380
EQAC30330	M30 x 330

|--|--|


CODE	DIMENSION
EQA208110	M8 x 110
EQA210130	M10 x 130
EQA212160	M12 x 160
EQA216190	M16 x 190
EQA220260	M20 x 260
EQA224300	M24 x 300
EQA230330	M30 x 330

EQ-8.8 Zingué 8.8

EQ-A4 Inoxydable A4

CODE DIMENSION EQ8808110 M8 x 11040 EQ8810130 M10 x 130 EQ8812160 M12 x 160 EQ8816190 M16 x 190
EQ8810130 M10 x 130 EQ8812160 M12 x 160
EQ8812160 M12 x 160
EQ8816190 M16 x 190
EQ8820260 M20 x 260
EQ8824300 M24 x 300

CODE	DIMENSION
EQA408110	M8 x 110
EQA410130	M10 x 130
EQA412160	M12 x 160
EQA416190	M16 x 190
EQA420260	M20 x 260
EQA424300	M24 x 300
EQA430330	M30 x 330

Notes