Cheville femelle à frapper à expansion par percussion, pour béton non fissuré

Homologation ETA Option 7 pour usage structurel et Homologation ETA pour utilisation non structurelle. Acier zingué.

INFORMATION DU PRODUIT

DESCRIPTION

Cheville métallique avec filetage femelle à expansion par frappe.

DOCUMENTATION OFFICIELLE

- CE-1219-CPR-0078.
- CE-1219-CPR-0079.
- ETA 14/0135 option 7.
- ETA 14/0068 option usages multiples pour des applications non structurelles en béton.
- Déclaration des Performances DoP HEHO.

DIMENSIONS

M6x25 à M20x80.

PLAGE DE CHARGE DE CALCUL

De 3,5 à 17,2 kN (non fissuré).

MATÉRIAU DE BASE

Béton de qualité C20/25 à C50/60 non fissuré (Structurelle).

Béton de qualité C12/15 à C50/60 (Non structurelle).

HOMOLOGATIONS

- · Option 7 (béton non fissuré).
- · Usages multiples.

Técnicas Expansivas S.L. Segador 13. Logroño. Spain ETA 14/0135, ETA 14/0068 1219 Structural / non structural fixings

in concrete

CARACTÉRISTIQUES ET AVANTAGES

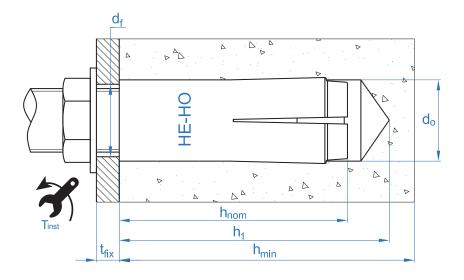
- · Pose facile.
- · Fonctionnement par déformation.
- Conçu pour le béton non fissuré.
- · Approprié pour des charges moyennes à élevées.
- · Installation préalable au matériau à fixer.
- Pour charges statiques ou quasi statiques.
- · Peut se démonter tout en laissant la superficie diaphane (la douille et le cône restent au fond du trou).
- · Boulon non fourni.
- Disponible sur INDEXcal.

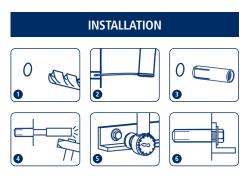
MATÉRIAUX

Douille: Acier au carbone, zingué ≥ 5 µm. Cône: Acier au carbone, zingué ≥ 5 µm.

APPLICATIONS

- Fixations de plafonds suspendus, systèmes d'arrosage et de ventilation.
- · Fixations structurelles, ferrures en intérieures et/ ou extérieures.
- · Fixation de tiges.




APPLICATION STRUCTURELLE

	PROPRIÉTÉS MÉCANIQUES											
MÉTRIC	QUE		M6	M8	M10	M12	M16	M20				
A_s	A _s (mm²) Partie vis, zone de filetage			36,6	58	84,3	157	245				
NUANC	E DE L'AC	IER DE LA VIS	4.6	4.8	5.6	5.8	6.8	8.8				
f _{uk}	(N/mm ²)	Résistance caractéristique de la vis	400	400	500	500	600	800				

	DONNÉES D'INSTALLATION												
MÉTRIC	QUE		M6	M8	M10	M12	M16	M20					
Code			НЕНОМ06	НЕНОМ08	HEHOM10	HEHOM12	НЕНОМ16	HEHOM20					
d_0	Diamètre du foret	[mm]	8	10	12	15	20	25					
T _{ins}	Couple d'installation	[Nm]	4	11	17	38	60	100					
d_{f}	Diamètre du filetage sur la plaque à fixer	[mm]	7	9	12	14	18	22					
h ₁	Profondeur du perçage	[mm]	27	33	43	54	70	86					
h _{nom}	Profondeur d'installation	[mm]	25	30	40	50	65	80					
h _{ef}	Profondeur effective	[mm]	25	30	40	50	65	80					
h _{min}	Épaisseur minimale du matériau de base	[mm]	100	100	100	100	130	160					
S _{cr,N}	Distance critique entre chevilles	[mm]	75	90	120	150	195	240					
C _{cr,N}	Distance critique au bord	[mm]	38	45	60	75	98	120					
S _{cr,sp}	Distance critique à fissuration	[mm]	50	60	80	100	130	160					
C _{cr,sp}	Distance critique au bord à fissuration	[mm]	75	90	120	150	195	240					
S _{min}	Distance minimale entre chevilles	[mm]	60	60	80	100	130	160					
C _{min}	Distance minimale au bord	[mm]	105	105	140	175	230	280					

Code	PRODUITS D'INSTALLATION						
	Perceuse à percussion						
BHDSXXXXX	Forets pour béton						
MOBOMBA	Pompe soufflante						
MORCEPKIT	Écouvillon						
EXHBMXX	Embout à sertir pour cheville femmelle						
	Clé dynamométrique						
	Embouts hexagonaux						

Resistance du béton de C20/25 pour une cheville isolée, sans effets de distance au bord ni distances entre chevilles

	Résistance caractéristique N _{Rk} y V _{Rk}															
	TRACTION								CISAILLEMENT							
Métrique M6 M8 M10 M12 M16 M20			M20		Métrique M6 M8 M10 M12				M16	M20						
N_{Rk}	Béton non fissuré [kN]	6,3	8,2	12,7	17,8	26,4	36,0		ACIER CLASSE 4.6		7,3	11,6	16,8	31,4	49,0
										ACIER CLASSE 4.8	4,0	8,3	9,1	17,8	31,4	47,5
									\/	ACIER CLASSE 5.6	5,0	9,1	9,1	17,8	39,2	61,2
				V _{Rk}	ACIER CLASSE 5.8	5,0	8,3	9,1	17,8	32,5	47,5					
						ACIER CLASSE 6.8	6,3	8,3	9,1	17,8	32,5	47,5				
								ACIER CLASSE 8.8	6,3	8,3	9,1	17,8	32,5	47,5		

	Résistance de calcul N _{Rd} y V _{Rd}													
TRACTION									CISAILL	EMENT				
Métrique M6 M8 M10 M12 M16 M20					Métrique M6 M8 M10 M12				M16	M20				
N _{Rd} Béton non fissuré [kN	3,5	4,6	6,1	8,5	12,6	17,2		ACIER CLASSE 4.6	5,0	9,1	9,1	17,8	39,2	61,2
						ACIER CLASSE 4.8	3,2	5,5	7,3	11,9	25,1	38,0		
							1/	ACIER CLASSE 5.6	3,0	5,4	5,4	11,9	23,5	36,6
			V_{Rd}	ACIER CLASSE 5.8	4,0	5,5	7,3	11,9	26,0	38,0				
					ACIER CLASSE 6.8	4,2	5,5	7,3	11,9	26,0	38,0			
						ACIER CLASSE 8.8	4,2	5,5	7,3	11,9	26,0	38,0		

	Charge maximale recommandée N _{rec} y V _{rec}															
	TRACTION									CISAILLEMENT						
Métrique M6 M8 M10 M12 M16 M20					Métrique	M6	M8	M10	M12	M16	M20					
N_{rec}	Béton non fissuré	[kN]	2,5	3,3	4,4	6,1	9,0	12,3		ACIER CLASSE 4.6	3,6	6,5	6,5	12,7	28,0	43,7
				ACIER CLASSE 4.8	2,3	3,9	5,2	8,5	17,9	27,1						
									\/	ACIER CLASSE 5.6	2,1	3,9	3,9	8,5	16,8	26,2
			V _{rec}	ACIER CLASSE 5.8	2,9	3,9	5,2	8,5	18,6	27,1						
					ACIER CLASSE 6.8	3,0	3,9	5,2	8,5	18,6	27,1					
							ACIER CLASSE 8.8	3,0	3,9	5,2	8,5	18,6	27,1			

Méthode de calcul simplifié

Évaluation Technique Européenne ETA 14/0135

Version simplifiée de la méthode de calcul selon ETAG 001, annexe C. La résistance se calcule selon les données reflétées dans l'homologation ETA 14/0135.

• Influence de la résistance du béton.

- Influence de la distance au bord.
- Influence de l'espace entre chevilles.
- · Influence des armatures.
- Influence de l'épaisseur du matériau de base.
- Influence de l'angle d'application de la charge.
- Valable pour un groupe de deux chevilles.

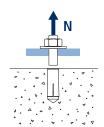
La méthode de calcul est basée sur la simplification suivante: Aucune charge différente n'agit sur des chevilles individuelles, sans excentricité.

INDEXcal

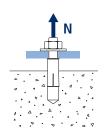
Pour un calcul plus précis qui prendrait en compte davantage de dispositions constructives, nous recommandons notre programme de calcul INDEXcal. Il est téléchargeable sur notre site www.indexfix.com

CHARGES DE TRACTION

Résistance de calcul de l'acier:

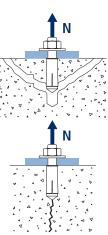

• Résistance de calcul par arrachement:

$$\begin{split} & N_{Rd,p}^{} = N_{Rd,p}^{\circ} \cdot \Psi_c \\ & N_{Rd,c}^{} = N_{Rd,c}^{\circ} \cdot \Psi_b^{} \cdot \Psi_{s,N}^{} \cdot \Psi_{c,N}^{} \cdot \Psi_{re,N}^{} \end{split}$$


· Résistance de calcul par cône de béton:

• Résistance de calcul par fissuration du béton:
$$N_{Rd,c} = N_{Rd,c}^{\circ} \cdot V_b \cdot V_{s,sp} \cdot V_{c,sp} \cdot V_{re,N} \cdot V_{h,sp}$$

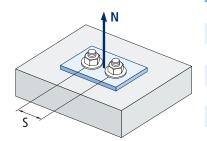

	Résistance de calcul de l'acier											
	N _{Rd,s}											
	Métrique	M6	M8	M10	M12	M16	M20					
	ACIER CLASSE 4.6	4,0	7,3	11,6	16,9	31,4	49,0					
	ACIER CLASSE 4.8	5,3	9,7	12,1	22,5	41,9	63,4					
NIO	ACIER CLASSE 5.6	5,1	9,2	9,1	21,1	39,3	61,3					
N_{Rd}^{o}	ACIER CLASSE 5.8	6,7	11,7	12,1	23,4	43,3	63,4					
	ACIER CLASSE 6.8	8,1	11,7	12,1	23,4	43,3	63,4					
	ACIER CLASSE 8.8	8,7	11,7	12,1	23,4	43,3	63,4					



	Résistance de calcul par arrachement											
	$N_{Rd,p} = N^{\circ}_{Rd,p} \cdot \Psi_{c}$											
	Métrique		M6	M8	M10	M12	M16	M20				
$N_{Rd,p}^{o}$	Béton non fissuré	[kN]	-	-	-	-	-	-				

Résistance de calcul par cône de béton									
$N_{Rd,c} = N^{\circ}_{Rd,c} \cdot \Psi_b \cdot \Psi_{s,N} \cdot \Psi_{c,N} \cdot \Psi_{re,N}$									
Résistance de calcul par fissuration du béton*									
$N_{_{ m R}}$	$_{d,sp} = N'$	o _{Rd,c} • Ψ _b •	Ψ _{s,sp} • Ψ _{c,sp}	• Ψ _{re,N} • Ψ	h,sp				
Métrique M6 M8 M10 M12 M16 M20									
N° _{Rd,c} Béton non fissuré [kN] 3,5 4,6 6,1 8,5 12,6 17,2									

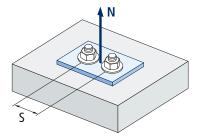
Coefficients d'influence

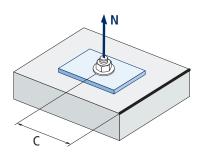


	Influence de la résistance du béton pour arrachement Ψ_{c}											
		M6	M8	M10	M12	M16	M20					
	C 20/25	1,00	1,00	1,00	1,00	1,00	1,00					
w	C 30/37	1,02	1,22	1,15	1,15	1,22	1,19					
Ψ _c	C 40/50	1,04	1,41	1,29	1,28	1,41	1,35					
	C 50/60	1,05	1,55	1,37	1,37	1,55	1,46					

. ✓	4 4
Δ ,	, , , , , , , , , , , , , , , , , , ,
Δ.	4. 4. 4. 4
٠ ،	
• ∇	
Δ ,	D. D. D. 4 D. A. D

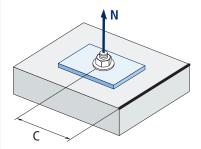
Influence de la résistance du béton pour cône du béton et fissuration de béton $\Psi_{_{\! b}}$											
		M6	M8	M10	M12	M16	M20				
	C 20/25			1,0	00						
	C 30/37	1,22									
Ψ_{b}	C 40/50			1,	41						
	C 50/60	1,55									


$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \ge 1$$


$$\Psi_{s,N} = 0.5 + \frac{s}{2 \cdot S_{cr,N}} \le 1$$

Influence distance entre chevilles (cône de béton) $\Psi_{_{s,N}}$									
				НО	, s,N				
s [mm]	M6	M8	M10	M12	M16	M20			
60	0,90	0,83							
65	0,93	0,86							
70	0,97	0,89		Valeurs non admises					
75	1,00	0,92							
80		0,94	0,83						
85		0,97	0,85						
90		1,00	0,88						
95			0,90						
100			0,92	0,83					
105			0,94	0,85					
110			0,96	0,87					
115			0,98	0,88					
120			1,00	0,90					
125				0,92					
130				0,93	0,83				
135				0,95	0,85				
140				0,97	0,86				
145				0,98	0,87				
150				1,00	0,88				
155					0,90				
160					0,91	0,83			
165					0,92	0,84			
170					0,94	0,85			
175					0,95	0,86			
180					0,96	0,88			
185					0,97	0,89			
190					0,99	0,90			
195					1,00	0,91			
200						0,92			
205						0,93			
210						0,94			
215		Valeur	s sans réduct	ion = 1		0,95			
220						0,96			
225	0,97 0,98								
230									
235		0,99							
240						1,00			

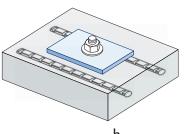
	Influe	ence distance	entre cheville	es (fissuration	η) Ψ		
	Influence distance entre chevilles (fissuration) Ψ _{s.sp}						
s [mm]	M6	M8	M10	M12	M16	M20	
60	0,70	0,67					
70	0,73	0,69					
80	0,77	0,72	0,67	Vale	eurs non admi	ses	
90	0,80	0,75	0,69				
100	0,83	0,78	0,71	0,67			
110	0,87	0,81	0,73	0,68			
120	0,90	0,83	0,75	0,70			
130	0,93	0,86	0,77	0,72	0,67		
140	0,97	0,89	0,79	0,73	0,68		
150	1,00	0,92	0,81	0,75	0,69		
160		0,94	0,83	0,77	0,71	0,67	
170		0,97	0,85	0,78	0,72	0,68	
180		1,00	0,88	0,80	0,73	0,69	
190			0,90	0,82	0,74	0,70	
200			0,92	0,83	0,76	0,71	
210			0,94	0,85	0,77	0,72	
220			0,96	0,87	0,78	0,73	
230			0,98	0,88	0,79	0,74	
240	1,00 0,90 0,81 0,92 0,82					0,75	
250		0,82	0,76				
260				0,93	0,83	0,77	
270				0,95	0,85	0,78	
280				0,97	0,86	0,79	
290				0,98	0,87	0,80	
300				1,00	0,88	0,81	
310					0,90	0,82	
320					0,91	0,83	
330					0,92	0,84	
340					0,94	0,85	
350 360					0,95	0,86	
370					0,96 0,97	0,88	
380					0,97	0,89	
390					1,00	0,90	
400					1,00	0,91	
410						0,92	
420						0,94	
430		Valeur	s sans réduct	ion = 1		0,95	
440		Taicul.	Janes Touriet			0,96	
450						0,97	
460						0,98	
470		0,9					
480						1,00	


$$\Psi_{s,sp} = 0.5 + \frac{s}{2 \cdot S_{cr,sp}} \le 1$$

$$\Psi_{c,sp} = 0.35 + \frac{0.5 \cdot c}{C_{cr,sp}} + \frac{0.15 \cdot c^2}{C_{cr,sp}^2} \le 1$$

	Influer	nce distance a	u bord du bé	ton (fissurati	on) Ψ		
	Influence distance au bord du béton (fissuration) Ψ _{c,sp}						
s [mm]	M6	M8	M10	M12	M16	M20	
60							
65							
70							
75							
80			Valeurs no	n admises			
85							
90							
95							
100							
105	1,00*	1,00*					
110							
115							
120							
125							
130							
135							
140			1,00*				
145							
150							
155							
160							
165							
170							
175				1,00*			
180							
185							
190							
195							
200							
205							
210							
215							
220							
225		v. 1	7 T - 1				
230		Valeurs sans	reduction = 1		1,00*		
235							
240							
250							
260							
270						4.00*	
280						1,00*	

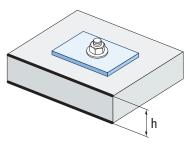
	Influence distance au bord du béton (cône de béton) Ψ _{c,N}						
. []			HE	-НО			
s [mm]	M6	M8	M10	M12	M16	M20	
60							
65							
70							
75							
80			Valeurs no	n admises			
85							
90							
95							
100							
105	1,00*	1,00*					
110							
115							
120							
125							
130							
135							
140			1,00*				
145							
150							
155							
160							
165							
170							
175				1,00*			
180							
185							
190							
195							
200							
205							
210							
215							
220							
225							
230		Valeurs sans	réduction = 1		1,00*		
235							
240							
250							
260							
270							
280						1,00*	



$$\Psi_{c,N} = 0.35 + \frac{0.5 \cdot c}{C_{cr,N}} + \frac{0.15 \cdot c^2}{C_{cr,N}^2} \le 1$$

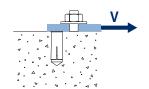
^{*}Il n'est pas possible d'installer en dessous de la distance minimale le bord du béton

	Influence d'armature Ψ _{re,N}								
		НЕ-НО							
$\Psi_{\text{re,N}}$	M6	M8	M10	M12	M16	M20			
	0,625	0,650	0,700	0,750	0,825	0,900			

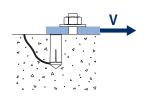

*Ce facteur s'applique seulement pour une densité élevée d'armatures. Si dans la zone d'ancrage les armatures ont un écart \geq 150 mm (n'importe quel diamètre) ou un diamètre \leq 10 mm et un écart \geq 100 mm, on pourra appliquer un facteur $f_{re,N} = 1$

$$\Psi_{\text{re,N}} = 0.5 + \frac{h_{\text{ef}}}{200} \le 1$$

Influence de l'épaisseur du matériau de base Ψ _{h,sp}											
						НЕ-НО					
$\Psi_{h,sp}$	h/hef	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	3,60	≥ 3,68
	fh	1,00	1,07	1,13	1,19	1,25	1,31	1,37	1,42	1,48	1,50

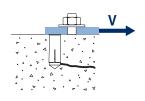


CHARGES DE CISAILLEMENT


- Résistance de calcul de l'acier sans bras de levier: $\,{
m V}_{{
m Rd,s}}\,$

• Résistance de calcul par écaillage: $V_{Rd,cp} = k \cdot N_{Rd,c}^{\circ}$ • Résistance de calcul par rupture du bord de béton: $V_{Rd,c} = V_{Rd,c}^{\circ} \cdot \Psi_b \cdot \Psi_{se,V} \cdot \Psi_{c,V} \cdot \Psi_{re,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{h,V}$

	Résistance de calcul de l'acier sans bras de levier						
	$V_{Rd,s}$						
	Métrique	M6	M8	M10	M12	M16	M20
	ACIER CLASSE 4.6	2,4	4,4	6,9	10,1	18,8	29,3
	ACIER CLASSE 4.8	3,2	5,8	7,3	13,4	25,1	38,0
V	ACIER CLASSE 5.6	3,0	5,4	5,4	12,6	23,5	36,6
$V_{Rd,s}$	ACIER CLASSE 5.8	4,0	7,0	7,3	14,0	26,0	38,0
	ACIER CLASSE 6.8	4,8	7,0	7,3	14,0	26,0	38,0
	ACIER CLASSE 8.8	5,2	7,0	7,3	14,0	26,0	38,0

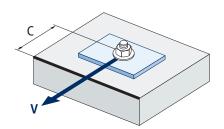


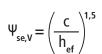
Résistance de calcul par écaillage *						
$V_{Rd,cp} = k \cdot N_{Rd,c}^{\circ}$						
Métrique	M6	M8	M10	M12	M16	M20
k	1	1	1	1	2	2

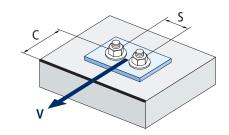
^{*} $N_{Rd,c}^{o}$ Résistance de calcul de traction par cône de béton

	Résistance de calcul par rupture du bord du béton							
$V_{Rd,c} = V^{o}_{Rd,c} \cdot \Psi_{b} \cdot \Psi_{se,V} \cdot \Psi_{c,V} \cdot \Psi_{re,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{h,V}$								
	Métrique		M6	M8	M10	M12	M16	M20
$V_{\text{Rd,c}}^{\text{o}}$	Béton non fissuré	[kN]	2,2	2,9	4,7	6,8	10,3	14,4

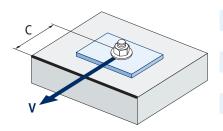
Coefficients d'influence


HE-HO	

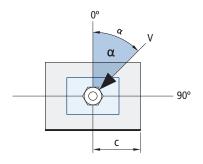

Influence de la résistance du béton à la rupture du bord du béton $\Psi_{_{\! b}}$									
		M6	M8	M10	M12	M16	M20		
	C 20/25	1,00							
	C 30/37	1,22							
Ψ_{b}	C 40/50	1,41							
	C 50/60			1,!	55				


4. 4	4 4 4 4
	Δ Δ · _d
4 4 A 4	^ · ^ ✓ . ·
	Δ . Δ . Δ
	▷ △
A A D .	۵.,۰,۰
	p · 4 . b

$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \ge 1$$

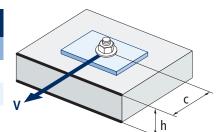

	Influence distance au bord et distance entre chevilles $\Psi_{se,V}$																	
	POUR UNE CHEVILLE																	
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	Isolé	0,35	0,65	1,00	1,40	1,84	2,32	2,83	3,38	3,95	4,56	5,20	5,86	6,55	7,26	8,00	9,55	11,18
	POUR DEUX CHEVILLES																	
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	1,0	0,24	0,43	0,67	0,93	1,22	1,54	1,89	2,25	2,64	3,04	3,46	3,91	4,37	4,84	5,33	6,36	7,45
	1,5	0,27	0,49	0,75	1,05	1,38	1,74	2,12	2,53	2,96	3,42	3,90	4,39	4,91	5,45	6,00	7,16	8,39
S/C	2,0	0,29	0,54	0,83	1,16	1,53	1,93	2,36	2,81	3,29	3,80	4,33	4,88	5,46	6,05	6,67	7,95	9,32
	2,5	0,32	0,60	0,92	1,28	1,68	2,12	2,59	3,09	3,62	4,18	4,76	5,37	6,00	6,66	7,33	8,75	10,25
	≥ 3,0	0,35	0,65	1,00	1,40	1,84	2,32	2,83	3,38	3,95	4,56	5,20	5,86	6,55	7,26	8,00	9,55	11,18


$$\Psi_{\text{se,V}} = \left(\frac{c}{h_{\text{ef}}}\right)^{1.5} \left(1 + \frac{s}{3 \cdot c}\right) \cdot 0.5 \le \left(\frac{c}{h_{\text{ef}}}\right)^{1.5}$$


$$\Psi_{c,V} = \left(\frac{d}{c}\right)^{0,20}$$

		nfluen <u>ce dist</u>	ance au bord	du béton Ψૂ,	<i>u</i>	
			HE-			
c [mm]	M6	M8	M10	M12	M16	M20
40						
45						
50						
55						
60						
65			Vale	eurs non adm	ises	
70						
80						
85						
90						
100						
105	0,56	0,60				
110	0,56	0,59				
120	0,55	0,58				
125	0,54	0,58				
130	0,54	0,57				
135	0,54	0,57				
140	0,53	0,56	0,59			
150	0,53	0,56	0,58			
160	0,52	0,55	0,57			
170	0,51	0,54	0,57			
175	0,51	0,54	0,56	0,59		
180	0,51	0,54	0,56	0,58		
190	0,50	0,53	0,55	0,58		
200	0,50	0,53	0,55	0,57		
210	0,49	0,52	0,54	0,56		
220	0,49	0,52	0,54	0,56		
230	0,48	0,51	0,53	0,55	0,59	
240	0,48	0,51	0,53	0,55	0,58	
250	0,47	0,50	0,53	0,54	0,58	
260	0,47	0,50	0,52	0,54	0,57	
270	0,47	0,49	0,52	0,54	0,57	
280	0,46	0,49	0,51	0,53	0,56	0,59
290	0,46	0,49	0,51	0,53	0,56	0,59
300	0,46	0,48	0,51	0,53	0,56	0,58

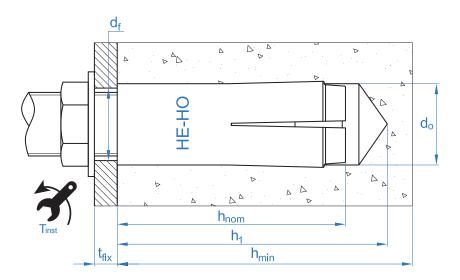
	Influence des armatures $\Psi_{re,V}$							
	Sans armature en périmètre	Armature en périmètre ≥ Ø12 mm	Armature en périmètre avec étrier à ≤ 100 mm					
Béton non fissuré	1	1	1					



Influence de l'angle d'application de la charge $\Psi_{\pmb{lpha},\pmb{ u}}$											
Angle, α(°)	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°	
Ψ _{α.ν}	1,00	1,01	1,05	1,13	1,24	1,40	1,64	1,97	2,32	2,50	

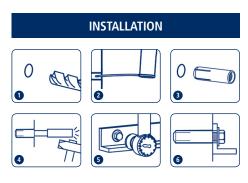
$$\Psi_{\alpha,v} = \sqrt{\frac{1}{\left(\cos\alpha_v\right)^2 + \left(\frac{\sin\alpha_v}{2,5}\right)^2}} \ge 1$$

	Influence de l'épaisseur du matériau de base Ψ _{h,v}												
	HE-HO												
h/c	0,15	0,30	0,45	0,60	0,75	0,90	1,05	1,20	1,35	≥1,5			
$\Psi_{\text{h,V}}$	0,32	0,45	0,55	0,63	0,71	0,77	0,84	0,89	0,95	1,00			



$$\Psi_{h,v} = \left(\frac{h}{1.5 \cdot c}\right)^{0.5} \ge 1.0$$

APPLICATION NON STRUCTURELLE


	PROPRIÉTÉS MÉCANIQUES										
MÉTRIQUE			M6	M8	M10	M12	M16	M20			
A_s	(mm²)	Partie vis, zone de filetage	20,1	36,6	58	84,3	157	245			
NUANC	NUANCE DE L'ACIER DE LA VIS		4.6	4.8	5.6	5.8	6.8	8.8			
f _{uk}	(N/mm ²)	Résistance caractéristique de la vis	400	400	500	500	600	800			

	DONNÉES D'INSTALLATION											
MÉTRIC	QUE		M6	M8	M10	M12	M16	M20				
Code			НЕНОМ06	НЕНОМ08	HEHOM10	HEHOM12	НЕНОМ16	HEHOM20				
d_0	Diamètre du foret	[mm]	8	10	12	15	20	25				
T _{ins}	Couple d'installation	[Nm]	4	11	17	38	60	100				
d _f	Diamètre du filetage sur la plaque à fixer	[mm]	7	9	12	14	18	22				
h ₁	Profondeur du perçage	[mm]	27	33	43	54	70	86				
h _{nom}	Profondeur d'installation	[mm]	25	30	40	50	65	80				
h _{ef}	Profondeur effective	[mm]	25	30	40	50	65	80				
h _{min}	Épaisseur minimale du matériau de base	[mm]	100	100	100	100	130	160				
S _{min}	Distance minimale entre chevilles	[mm]	60	60	80	100	130	160				
C _{min}	Distance minimale au bord	[mm]	105	105	140	175	230	280				
S _{cr}	Distance critique entre chevilles	[mm]	150	180	240	300	390	480				
C _{cr}	Distance critique au bord	[mm]	75	90	120	150	195	240				

Code	PRODUITS D'INSTALLATION
	Perceuse à percussion
BHDSXXXXX	Forets pour béton
MOBOMBA	Pompe soufflante
MORCEPKIT	Écouvillon
EXHBMXX	Embout à sertir pour cheville femmelle
	Clé dynamométrique
	Embouts hexagonaux

Résistances du béton de C12/15 et de C20/25 à C50/60 pour une cheville isolée, sans effets de distance au bord ni distances entre axes

	Résistance caractéristique F _{Rk}										
	DANS TOUTES LES DIRECTIONS DE LA CHARGE										
	Métrique		M6	M8	M10	M12	M16	M20			
-	Béton C12/15	[kN]	1,5	3,0	4,0	6,0	9,0	16,0			
F _{Rk}	Béton C20/25 à C50/60		2,0	3,0	5,0	7,5	12,0	20,0			

	Résistance de calcul F _{Rd}										
	DANS TOUTES LES DIRECTIONS DE LA CHARGE										
	Métrique	M6	M8	M10	M12	M16	M20				
F	Béton C12/15	[kN]	0,8	1,7	1,9	2,9	4,3	7,6			
F _{Rd}	Béton C20/25 à C50/60		1,1	1,7	2,4	3,6	5,7	9,5			

	Charge maximale recommandée F _{rec}										
	DANS TOUTES LES DIRECTIONS DE LA CHARGE										
	Métrique	M6	M8	M10	M12	M16	M20				
-	Béton C12/15	[kN]	0,6	1,2	1,4	2,0	3,1	5,4			
r _{ec}	Béton C20/25 à C50/60		0,8	1,2	1,7	2,6	4,1	6,8			

Méthode de calcul simplifié

Évaluation Technique Européenne ETA 14/0068

Version simplifiée de la méthode de calcul selon ETAG 001, annexe C. La résistance se calcule selon les données reflétées dans l'homologation ETA 14/0068.

- Influence de la résistance du béton.
- Influence de la distance au bord.
- Influence de l'espace entre chevilles.
- Influence des armatures.
- Valable pour un groupe de deux chevilles.

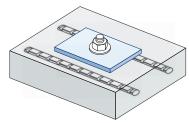
La méthode de calcul est basée sur la simplification suivante: Aucune charge différente n'agit sur des chevilles individuelles, sans excentricité.

INDEXcal

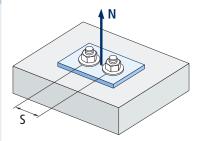
Pour un calcul plus précis qui prenne en compte plus de dispositions de construction, INDEX Fixing Systems est en train de développer un programme de calcul pour de multiples usages sur des applications non structurelles en béton.

CHARGES DANS TOUTES LES DIRECTIONS

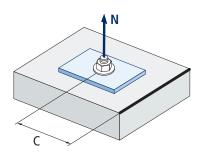
 $\cdot \text{ R\'esistance de calcul pour des charges dans toutes les directions: } \ F_{Rd} = F^o_{\ Rd} \cdot \Psi_s \cdot \Psi_c \cdot \Psi_{re}$


	Résistance de calcul pour des charges dans toutes les direction											
	F_Rd											
	Métrique	M6	M8	M10	M12	M16	M20					
F°	Béton C12/15	0,8	1,7	2,2	3,3	5,0	8,9					
F Rd	Béton C20/25 à C50/60	1,1	1,7	2,8	4,2	6,7	11,1					

Coefficients d'influence


Influence des armatures Ψ _{re,N}						
	M6	M8	M10	M12	M16	M20
$\psi_{\text{re,N}}$	0,625	0,650	0,700	0,750	0,825	0,900

*Ce facteur ne s'applique que pour une densité élevée des armatures. Si dans la zone de l'ancrage les armatures présentent une distanciation \geq 150 mm (tout diamètre compris) ou un diamètre \leq 10 mm et une distanciation \geq 100 mm, on peut appliquer un coefficient $f_{re,N}=1$



$$\Psi_{\text{re,N}} = 0.5 + \frac{h_{\text{ef}}}{200} \le 1$$

	Influen	ce distance <u>e</u>	ntre chevilles	(cône de bét	on) Ψ <u>. </u>	
				-HO	S,IV	
s [mm]	M6	M8	M10	M12	M16	M20
60	0,70	0,67				
70	0,73	0,69				
80	0,77	0,72	0,67	Vale	eurs non adm	ises
90	0,80	0,75	0,69			
100	0,83	0,78	0,71	0,67		
110	0,87	0,81	0,73	0,68		
120	0,90	0,83	0,75	0,70		
130	0,93	0,86	0,77	0,72	0,67	
140	0,97	0,89	0,79	0,73	0,68	
150	1,00	0,92	0,81	0,75	0,69	
160		0,94	0,83	0,77	0,71	0,67
170		0,97	0,85	0,78	0,72	0,68
180		1,00	0,88	0,80	0,73	0,69
190			0,90	0,82	0,74	0,70
200			0,92	0,83	0,76	0,71
210			0,94	0,85	0,77	0,72
220			0,96	0,87	0,78	0,73
230			0,98	0,88	0,79	0,74
240			1,00	0,90	0,81	0,75
250				0,92	0,82	0,76
260				0,93	0,83	0,77
270				0,95	0,85	0,78
280				0,97	0,86	0,79
290				0,98	0,87	0,80
300				1,00	0,88	0,81
310					0,90	0,82
320					0,91	0,83
330					0,92	0,84
340					0,94	0,85
350					0,95	0,86
360					0,96	0,88
370					0,97 0,99	0,89
380 390					1,00	0,90 0,91
400					1,00	0,91
410						0,92
420		Valeur	s sans réduct	ion = 1		0,93
430		taicui.	Jans reduct			0,95
440						0,96
450						0,97
460						0,98
470						0,99
480						1,00

$$\Psi_{s} = 0.5 + \frac{s}{2 \cdot s_{sr}} \le 1$$

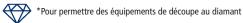
$$\Psi_c = 0.35 + \frac{0.5 \cdot c}{C_{cr}} + \frac{0.15 \cdot c^2}{C_{cr}^2} \le$$

	Influence	distance au	bord du béto	on (cône de be	éton) Ψ _{c,N}	
, ,				-НО		
s [mm]	M6	M8	M10	M12	M16	M20
60						
65						
70						
75			Valeurs no	on admises		
80						
85						
90						
95						
100						
105	1,00*	1,00*				
110						
115						
120						
125						
130						
135						
140			1,00*			
145						
150						
155						
160						
165						
170						
175				1,00*		
180						
185						
190						
195						
200						
205						
210						
215						
220						
225		Valoure ser	réduction = 1		1.00*	
230		valeurs sans	reduction = 1		1,00*	
235						
240						
250						
260						
270						1,00*

^{*}Il n'est pas possible d'installer en dessous de la distance minimale le bord du béton

RÉSISTANCE AU FEU

		Rési	stance caractéristic	que*		
	TRACTION					
	M6	M8	M10	M12	M16	M20
RF30	-	0,4	0,9	1,7	3,1	4,9
RF60	-	0,3	0,8	1,3	2,4	3,7
RF90	-	0,3	0,6	1,1	2	3,2
RF120	-	0,2	0,5	0,8	1,6	2,5


^{*}Le facteur de sécurité pour la résistance de calcul sous exposition au feu est M,fi=1 (faute de règlementation nationale). Par conséquent, la Résistance Caractéristique est égale à la Résistance de Calcul.

Charge maximale recommandée						
	TRACTION					
	M6	M8	M10	M12	M16	M20
RF30	-	0,3	0,6	1,2	2,2	3,5
RF60	-	0,2	0,6	0,9	1,7	2,6
RF90	-	0,2	0,4	0,8	1,4	2,3
RF120	-	0,1	0,4	0,6	1,1	1,8

GAMME

Code	Dimensions	Longueur	Ø	Ø
НЕНОМ06	M6 x 25 Ø8	25	100	4.000
НЕНОМ08	M8 x 30 Ø10	30	100	2.200
HEHOM10	M10 x 40 Ø12	40	50	1.000
HEHOM12	M12 x 50 Ø15	50	50	600
HEHOM16	M16 x 65 Ø20	65	25	250
HEHOM20	M20 x 80 Ø25	80	25	100
• HEHOM12D*	M12 x 50 Ø12	50	50	600

[•] Dimensions non homologuées. Les valeurs de résistance et les données d'installation ne sont pas applicables pour ces références. Pour plus d'information, contactez le Service Technique.

Outil de pose manuel pour chevilles femelles

Code	Dimensions	Ø	đ
EXHBM06	M6 x 120	1	10
EXHBM08	M8 x 120	1	10
EXHBM10	M10 x 120	1	10
EXHBM12	M12 x 130	1	10
EXHBM16	M16 x 145	1	10
EXHBM20	M20 x 155	1	10

Notes