

for Construction Prague
Prosecká 811/76a
190 00 Prague
Czech Republic
eota@tzus.cz

European Technical Assessment

ETA 24/0867 of 22/11/2024

Technical Assessment Body issuing the ETA: Technical and Test Institute

for Construction Prague

Trade name of the construction product MO-VH

MO-VHW MO-VHS

Product family to which the construction

product belongs

Product area code: 33

Bonded injection type anchor for use in

cracked and uncracked concrete

Manufacturer Index Técnicas Expansivas, S.L.

P.I. La Portalada II C/ Segador 13 26006 Logroño (La Rioja)

Snain

https://www.indexfix.com/

Manufacturing plant Index Plant 1

This European Technical Assessment

contains

31 pages including 28 Annexes which form

an integral part of this assessment.

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

EAD 330499-02-0601

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The MO-VH, MO-VHW (faster curing time) and MO-VHS (extended processing time) with steel elements is bonded anchor (injection type).

Steel elements can be galvanized or stainless steel threaded rod or rebar.

Steel element is placed into a drilled hole filled with injection mortar. The steel element is anchored via the bond between metal part, injection mortar and concrete.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years and 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 to C 11
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 12, C 13
Displacements under short-term and long-term loading	See Annex C 14
Characteristic resistance for seismic performance categories C1 and C2	See Annex C 15 to C 18

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Satisfy the requirements for performance class A1
Resistance to fire	See Annex C 19, C 20

3.3 Hygiene, health and environment (BWR 3)

No performance determined.

3.4 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Metal anchors for	For fixing and/or supporting to concrete,		
use in concrete	structural elements (which contributes to	-	1
	the stability of the works) or heavy units		

Official Journal of the European Communities L 254 of 08.10.1996

.

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technical and Test Institute for Construction Prague.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

Issued in Prague on 22.11.2024

By
Ing. Jiří Studnička, Ph.D.
Head of the Technical Assessment Body

-

The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

Threaded rod Reinforcing bar

Threaded rod M8, M10, M12, M16, M20, M24, M27, M30

Standard commercial threaded rod with marked embedment depth

Part	Designation	Material							
Steel, Steel,	Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042 or Steel, Hot-dip galvanized ≥ 40 µm acc. to EN ISO 1461 and EN ISO 10684 or Steel, zinc diffusion coating ≥ 15 µm acc. to EN 13811								
1	Anchor rod	Steel, EN 10087 or EN 10263 Property class 4.6, 5.8, 8.8, 10.9* EN ISO 898-1							
2	Hexagon nut EN ISO 4032	According to threaded rod, EN 20898-2							
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod							
Stainl	ess steel								
1	Anchor rod	Material: A2-70, A4-70, A4-80, EN ISO 3506							
2	Hexagon nut EN ISO 4032	According to threaded rod							
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod							
High (corrosion resistant steel								
1	Anchor rod	Material: 1.4529, 1.4565, EN 10088-1							
2	Hexagon nut EN ISO 4032	According to threaded rod							
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod							

^{*}Galvanized rod of high strength are sensitive to hydrogen induced brittle failure

MO-VH, MO-VHW, MO-VHS	
Product description Threaded rod and materials	Annex A 3

Rebar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25, Ø32

Standard commercial reinforcing bar with marked embedment depth

Product form Bars and de-coiled				
Class	В	С		
Characteristic yield strength fyk or fo	_{0,2k} (MPa)	400 t	o 600	
Minimum value of $k = (f_t/f_y)_k$		≥ 1,08	≥ 1,15 < 1,35	
Characteristic strain at maximum for	aracteristic strain at maximum force ε _{uk} (%)			
Bendability		Bend/Rebend test		
Maximum deviation from nominal	Nominal bar size (mm)			
mass (individual bar) (%)	≤ 8	±6,0		
	> 8 ±4,5			
Bond: Minimum relative rib area,	Nominal bar size (mm))		
$f_{R,min}$	8 to 12	0,0)40	
	> 12	0,0)56	

MO-VH, MO-VHW, MO-VHS	
Product description Rebars and materials	Annex A 4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static load
- Fire exposure
- Seismic actions category C1
- Seismic actions category C2: only threaded rod size M12, M16, M20

Base materials

- Cracked and uncracked concrete
- Reinforced or unreinforced normal weight concrete without fibres of strength class C20/25 at minimum and C50/60 at maximum according EN 206-1:2000-12

Temperature range:

• -40°C to +80°C (max. short. term temperature +80°C and max. long term temperature +50°C)

Use conditions (Environmental conditions)

- Structures subject to dry, internal conditions (all materials)
- For all other conditions according to EN 1993-1-4 corresponding to corrosion resistance class:
 - Stainless steel A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Concrete conditions:

- I1 installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete.
- 12 installation in water-filled (not sea water) and use in service in dry or wet concrete

Design:

- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Anchorages under seismic actions (cracked concrete) have to be designed in accordance with EN 1992-4.
- For applications with resistance to fire exposure, the fasteners are designed in accordance with EOTA TR 082 "Design of bonded fasteners in concrete under fire conditions"

Installation:

- Hole drilling by hammer drilling, dustless drilling or diamond core drilling mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Installation direction:

• D3 – downward and horizontal and upwards (e.g. overhead) installation

MO-VH, MO-VHW, MO-VHS	
Intended use Specifications	Annex B 1

HDB - Hollow Drill Bit System

Heller Duster Expert hollow drill bit SDS-Plus ≤ 16mm SDS-Max ≥ 16mm

Class M vacuum Minimum flow rate 266 m³/h (74 l/s)

Cleaning brush

Applicator gun

Applicator gun	Α	В	С	D	Е	F	G
		Side by side		•	Coaxial	Side by side	•
Cartridge	380ml 400ml	350ml 360ml	150ml 300ml	150ml 300ml	150ml	825ml	850ml
	410ml		550ml				

MO-VH, MO-VHW, MO-VHS	
Intended use	Annex B 2
Hollow drill bit system, Cleaning brush	Alliex B 2
Applicator guns	

SOLID SUBSTRATE INSTALLATION METHOD

1. Using the SDS hammer drill (HD) in rotary hammer mode for drilling, with a carbide tipped drill bit of the appropriate size, drill the hole to the specified hole diameter and depth.

2. Select the correct air lance, insert to the bottom of the hole, and depress the trigger for 2 seconds. The compressed air must be clean and free from water and oil, with a minimum pressure of 90 psi (6 bar). A manual pump may be used for certain diameters and depths; check the approval document. Perform the blowing operation twice.

3. Select the correct size hole cleaning brush. Ensure that the brush is in good condition and of the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom. Withdraw with a twisting motion. There should be a positive interaction between the bristles of the brush and the sides of the drilled hole. Perform the brushing operation twice.

4. Repeat step 2 (blowing operation x2)

5. Repeat step 3 (brushing operation x2)

6. Repeat step 2 (blowing operation x2)

7. Select the most appropriate static mixer nozzle, checking that the mixing elements are present and fit for purpose. Never modify the mixer. Attach the mixer nozzle to the cartridge. Check the dispensing tool is in good working order. Place the cartridge into the dispensing tool.

- 12. Refer to the working and loading times within the tables to determine the appropriate cure time.
- 13. Position the fixture and tighten the anchor to the appropriate installation torque. Do not over-torque the anchor, as this could adversely affect its performance.

DEEP EMBEDMENT & OVERHEAD INSTALLATION METHOD

1a. Perform steps 1-8 under "solid substrate installation method".

2a. Attach the correct diameter and length extension tube to the nozzle. Select the correct diameter resin stopper for the application, then push and screw the extension tube into the resin stopper. This is held in place with a coarse internal thread. The resin stopper is a reusable accessory.

3a. Push the resin stopper and extension tube to the back of the drill hole.

4a. Ensure the extension tube is angled to allow free movement of the resin stopper as the resin is

5a. Continue from step 10 under "solid substrate installation method".

DIAMOND CORE DRILLING

1b. Using a diamond core drill (DD) and following the manufacturer's instructions, drill the specified diameter hole to the correct embedment depth then remove the concrete core.

2b. Starting from the back of the hole, flush with pressurised water a minimum of two times and until there is only clean water.

3b. Select the correct size hole cleaning brush. Ensure that the brush is in good condition and of the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom. Withdraw with a twisting motion. There should be a positive interaction between the bristles of the brush and the sides of the drilled hole. Perform the brushing operation twice.

4b. Repeat step 2b (flushing operation x2).

6a. Using the correct air lance and starting from the back of the hole and withdrawing, perform a minimum of two blowing operations and ensure that the hole is clear of debris and excess water.

7a. Continue from step 7 under "solid substrate installation method".

DUSTLESS DRILLING

1c. Using the specified hollow drill bit (HDB) and vacuum system and following the manufacturer's instructions, drill the specified diameter hole to the correct embedment depth. Ensure that the minimum vacuum specifications are met and that the vacuum is turned on.

2c. The hole should be inspected to ensure the system has worked correctly. If the hole is clear of dust and debris, no further cleaning is required.

3c. Continue from step 7 under "solid substrate installation method"

MO-VH, MO-VHW, MO-VHS

Intended use Installation procedure Annex B 3

Table B1: Installation parameters of threaded rod

Size			M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	Ød₀	[mm]	10	12	14	18	22	26	30	35
Diameter of cleaning brush	d♭	[mm]	14	14	20	20	29	29	40	40
Manual pump cleaning				h _{ef} < 300 mm						
Torque moment	max T _{fix}	[Nm]	10	20	40	80	150	200	240	275
Depth of drill hole for hef,min	$h_0 = h_{ef}$	[mm]	40	40	48	64	80	96	108	120
Depth of drill hole for hef,max	$h_0 = h_{ef}$	[mm]	160	200	240	320	400	480	540	600
Minimum edge distance	Cmin	[mm]	35	40	50	65	80	96	110	120
Minimum spacing	Smin	[mm]	35	40	50	65	80	96	110	120
Minimum thickness of member	h_{min}	[mm]	h _{ef} +	$h_{ef} + 30 \text{ mm} \ge 100 \text{ mm}$ $h_{ef} + 2d_0$			- 2d₀			

Table B2: Installation parameters of rebar

Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Nominal drill hole diameter	$ \emptyset d_0 $	[mm]	12	14	16	20	25	32	40
Diameter of cleaning brush	d _b	[mm]	14	14	19	22	29	40	42
Manual pump cleaning			h _{ef} < 300 mm						
Depth of drill hole for hef,min	$h_0 = h_{ef}$	[mm]	40	40	48	64	80	100	128
Depth of drill hole for hef,max	$h_0 = h_{ef}$	[mm]	160	200	240	320	400	500	640
Minimum edge distance	Cmin	[mm]	35	40	50	65	80	100	130
Minimum spacing	Smin	[mm]	35	40	50	65	80	100	130
Minimum thickness of member	h_{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm		h _{ef} + 2d	0			

Table B3: Minimum curing time

MO-VH			
Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]
+10	30 mins	-10 to -5	24 hours
+5	20 mins	-5 to 0	300 mins
0 to +5	15 mins	0 to +5	210 mins
+5 to +10	10 mins	+5 to +10	145 mins
+10 to +15	8 mins	+10 to +15	85 mins
+15 to +20	6 mins	+15 to +20	75 mins
+20 to +25	5 mins	+20 to +25	50 mins
+25 to +30	4 mins	+25 to +30	40 mins

MO-VHW			
Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]
+20	40 mins	-20 to -15 ¹⁾	24 hours
+20	30 mins	-15 to -10 ¹⁾	18 hours
+5	20 mins	-10 to -5	12 hours
+5	15 mins	-5 to 0	100 mins
0 to +5	10 mins	0 to +5	75 mins
+5 to +20	5 mins	+5 to +20	50 mins
+20	100 second	+20	20 mins

¹⁾ characteristic values of resistance see Annex C 3 and C 6, seismic performance see Annex C 14

MO-VHS			
Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]
+15 to +20	15 mins	+15 to +20	5 hours
+20 to +25	10 mins	+20 to +25	145 mins
+25 to +30	7.5 mins	+25 to +30	85 mins
+30 to +35	5 mins	+30 to +35	50 mins
+35 to +40	3.5 mins	+35 to +40	40 mins

T work is typical gel time at highest temperature

T load is set at the lowest temperature

MO-VH, MO-VHW, MO-VHS	
Intended use Installation parameters Curing time	Annex B 4

Table C1: Design method EN 1992-4 Steel failure - Characteristic values of resistance to tension load of threaded rod

Steel failure - Characteristic resista	nce									
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.6	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs	[-]				2,	00			
Steel grade 5.8	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	γMs	[-]				1,	50			
Steel grade 8.8	$N_{Rk,s}$	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]				1,	50			
Steel grade 10.9	$N_{Rk,s}$	[kN]	37	58	84	157	245	353	459	561
Partial safety factor	γMs	[-]				1,3	33			
Stainless steel grade A2-70, A4-70	$N_{Rk,s}$	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]				1,8	87			
Stainless steel grade A4-80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]				1,0	60			
Stainless steel grade 1.4529	$N_{Rk,s}$	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]				1,	50			
Stainless steel grade 1.4565	$N_{Rk,s}$	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]				1,8	87			

Table C2: Design method EN 1992-4
Steel failure - Characteristic values of resistance to tension load of rebar

Steel failure - Characteristic resistance									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	$N_{Rk,s}$	[kN]	28	43	62	111	173	270	442
Partial safety factor	γMs	[-]				1,4			

MO-VH, MO-VHW, MO-VHS	
Performances Steel failure characteristic resistance	Annex C 1

Table C3: Design method EN 1992-4
Characteristic values of resistance to tension load of threaded rod

Characteristic va	lues of resistance to	tension	load c	of thre	aded	rod				
Combined pullout and concre	ete cone failure in co	ncrete C	20/25							
Hammer drilling										
Size			M8	M10	M12	M16	M20	M24	M27	M30
	o in unorgalized cons	roto for o						IVIZ4	IVIZI	IVISU
Characteristic bond resistand Dry and wet concrete		FA 1 / 27	13,0		11.1	10,2	_	7.7	6.8	6,6
Installation safety factor	TRk,ucr		13,0	11,1	11,1		1.0	1,1	0,0	0,0
Flooded hole	γinst τrk,ucr	FN 1 / 27	10,0	8,6	8,6	7,8	7,6	5,9	5,2	5,1
Installation safety factor	γinst		10,0	0,0	0,0		1.4	0,0	0,2	0,1
Characteristic bond resistance			worki	na life	of 10		,			
Dry and wet concrete	TRk,cr	FR 1 / 27	11,2		9,6	8.7	8,5	6,6	5,9	5,7
Installation safety factor	γinst		,_	0,0	0,0	/	1.0	0,0	0,0	0,1
Flooded hole	TRk,cr	F5.17 27	10,0	8,6	8,6	7,8	7,6	5,9	5,2	5,1
Installation safety factor	γinst		10,0		-,-		1,4			-, -
Size			M8	M10	M12	M16	M20	M24	M27	M30
Characteristic bond resistance	e in cracked concret	e for a wo					10		1	1
Dry and wet concrete	TRk,cr	FB 1 / 27	7,4	7,4	7.4	6,2	6,1	5,6	4,8	4,4
Installation safety factor	γinst		7,1	, ,,,	, , , ,		1.0	0,0	1,0	.,.
Flooded hole	TRk,cr	FN 1 / 27	7,0	7,0	7,0	5,9	5,7	5,1	4,4	4,0
Installation safety factor	γinst		1,0	1 .,0	.,0		1,4	, 0, .	.,	.,0
Characteristic bond resistance			rkina	life of	100 v		,			
Dry and wet concrete	τ _{Rk,cr}	FR 1 / 27	3,9	3,9	3,9	3,6	3,5	3.1	2.7	2,4
Installation safety factor	γinst		0,0	0,0	0,0		1.0	Ο, .	,.	_, .
Flooded hole	τ _{Rk,cr}	FN 1 / 27	4,5	4,5	4,5	4,2	4,0	3.7	3,1	2,8
Installation safety factor	γinst		,-	, ,-	, , -		1,4		,	, -
-	,									
Dustless drilling						•				•
Size			M8	M10	M12	M16	M20	M24	M27	M30
Characteristic bond resistance	e in uncracked conc	rete for a	worki	ng life	of 50	year	s and	100 ye	ears	
Dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	13,0	11,1	11,1	10,2	9,9	7,7	6,8	6,6
Installation safety factor	γinst	[-]					,2			
Flooded hole	τ _{Rk,ucr}	[N/mm ²]	12,5	9,6	9,6	9,6	9,4	6,5	5,8	5,6
Installation safety factor	γinst	[-]					,4			
Size			M8	M10	M12	M16	M20	M24	M27	M30
Characteristic bond resistance	e in cracked concrete	e for a wo	rking	life of	50 ye	ars				
Dry and wet concrete	τ _{Rk,cr}	[N/mm ²]	7,4	7,4	7,4	6,2	6,1	5,6	4,8	4,4
Installation safety factor	γinst	[-]				1	,2			
Flooded hole	τ _{Rk,cr}	[N/mm ²]	7,4	7,4	7,4	6,2	6,1	5,6	4,8	4,4
Installation safety factor	γinst	[-]				1	,4			
Characteristic bond resistance	e in cracked concrete	e for a wo	rking	life of	100 y	ears/				
Dry and wet concrete	τ _{Rk,cr}	[N/mm ²]	4,5	4,5	4,5	4,2	4,0	3,7	3,1	2,8
Installation safety factor	γinst	[-]					,2		1	
Flooded hole	τ _{Rk,cr}	[N/mm ²]	4,5	4,5	4,5	4,2	4,0	3,7	3,1	2,8
Installation safety factor	γ̃inst	[-]				1	,4			
	C25/30					1	02			
	C30/37						04			
<u></u>	C35/45						06			
Factor for concrete	C40/50 Ψ ^c	[-]					07			
	C45/55						80			
	C50/60						09			
Factor for influence of sustained	T1: 24°C / 40°C0	r 1				0,	75			
load for a working life 50 years	T2: 50°C / 80°C Ψ ⁰ sus	[-]					73			
						·				
MO-VH, MO-VHW, MO-VHS										
						-				
Performances									- 0 0	

MO-VH, MO-VHW, MO-VHS	
Performances Hammer drilling, Dustless drilling Characteristic resistance for tension loads - threaded rod	Annex C 2

Table C4: Design method EN 1992-4
Characteristic values of resistance to tension load of threaded rod for MO-VHW with installation temperature < -10°C

Hammer drilling											
Size				M8	M10	M12	M16	M20	M24	M27	M30
Characteristic bond resistance	e in uncracked o	conc	rete for a	worki							
Dry and wet concrete		τRk,ucr	[N/mm ²]	12,4		10,6	9,7	9,4	7,3	6,5	6,3
Installation safety factor		γinst		1_, 1	, .	, .		.0	. , , -	-,-	-,-
Flooded hole		τRk,ucr	FA 1 / 27	9,5	8,1	8,1	7,4	7,3	5,6	5,0	4,8
Installation safety factor		γinst						,4	,	,	,
Characteristic bond resistance	e in uncracked o			worki	na life	of 10	0 vea	rs			
Dry and wet concrete		τ _{Rk,cr}	ED 1 / 27	10,6		9,1	8,3	8,1	6,3	5,6	5,4
nstallation safety factor		γinst					1	,0		,	,
Flooded hole		τ _{Rk,cr}	[N/mm ²]	9,5	8,1	8,1	7,4	7,3	5,6	5,0	4,8
Installation safety factor		γinst	[-]			•		,4	•		
Size	-	•	•	M8	M10	M12	M16	M20	M24	M27	M30
Characteristic bond resistance	e in cracked cor	ncret	e for a wo	rkina							
Dry and wet concrete	o mi oraonoa ooi	τ _{Rk,cr}	FA 1 / 21	7.1	7,1	7.1	5,9	5,8	5,3	4,6	4,1
Installation safety factor		γinst		1 .,.	, .	, , ,		,0	, 5,5	.,.	.,.
Flooded hole		τ _{Rk,cr}	FN 1 / 27	6,6	6,6	6,6	5,6	5,4	4,9	4,2	3,8
Installation safety factor		γinst		1	,-	,-		,4			-,-
Characteristic bond resistance	e in cracked cor	_		rkina	life of	100 v	ears				
Dry and wet concrete		τ _{Rk,cr}	FA 1 / 25	3,7	3,7	3,7	3,4	3,3	3,0	2,6	2,3
nstallation safety factor		γinst		1	1*			,0	,-		,-
Flooded hole		τ _{Rk,cr}	FN 1 / 27	4,3	4,3	4,3	4,0	3,8	3,5	3,0	2,7
nstallation safety factor		γinst	[-]				1	,4			
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
Dustless drilling											
Size				M8			M16				M30
Characteristic bond resistance	e in uncracked o	conc		worki				and '	100 ye	ears	
Dry and wet concrete	,	τRk,ucr	[N/mm ²]	12,4	10,6	10,6	9,7	9,4	7,3	6,5	6,3
Installation safety factor		γinst	[-]					.2			
Flooded hole	,	₹Rk,ucr	[N/mm ²]	11,9	9,1	9,1	9,1	9,0	6,2	5,5	5,4
Installation safety factor	.	γinst	[-]					4			
Size				M8		M12		M20	M24	M27	M30
Characteristic bond resistance	e in cracked cor	ncret		rking	life of	50 ye	ars				
Dry and wet concrete		$\tau_{\text{Rk,cr}}$	[N/mm ²]	7,1	7,1	7,1	5,9	5,8	5,3	4,6	4,1
Installation safety factor		γinst	[-]				1,				
Flooded hole		τ _{Rk,cr}	[N/mm ²]	7,1	7,1	7,1	5,9	5,8	5,3	4,6	4,1
Installation safety factor		γinst	[-]					,4			
•			- f-"			100 1	ears				
Characteristic bond resistance	e in cracked cor	ncret							3,5	3,0	2,7
Dry and wet concrete	e in cracked cor	1Cret τ _{Rk,cr}	[N/mm ²]	rking 4,3	life of 4,3	4,3	4,0	3,8	3,3	0,0	
Dry and wet concrete Installation safety factor	e in cracked cor		[N/mm ²] [-]	4,3	4,3	4,3	1,	2			
Dry and wet concrete Installation safety factor Flooded hole	e in cracked cor	τ _{Rk,cr}	[N/mm ²] [-] [N/mm ²]				4,0	3,8	3,5	3,0	2,7
Dry and wet concrete	e in cracked cor	τ _{Rk,cr} γinst	[N/mm ²] [-]	4,3	4,3	4,3	1,	3,8			2,7
Dry and wet concrete Installation safety factor Flooded hole		$ au_{Rk,cr}$ γ_{inst} $ au_{Rk,cr}$	[N/mm ²] [-] [N/mm ²]	4,3	4,3	4,3	4,0 1,	3,8 4			2,7
Dry and wet concrete Installation safety factor Flooded hole	C25/30	$ au_{Rk,cr}$ γ_{inst} $ au_{Rk,cr}$	[N/mm ²] [-] [N/mm ²]	4,3	4,3	4,3	1,0 1,0	2 3,8 4)2			2,7
Dry and wet concrete Installation safety factor Flooded hole Installation safety factor		TRk,cr γinst TRk,cr γinst	[N/mm ²] [-] [N/mm ²]	4,3	4,3	4,3	1, 4,0 1, 1,0	2 3,8 4)2)4			2,7
Dry and wet concrete Installation safety factor Flooded hole Installation safety factor	C25/30 C30/37	$ au_{Rk,cr}$ γ_{inst} $ au_{Rk,cr}$	[N/mm ²] [-] [N/mm ²]	4,3	4,3	4,3	1,0 1,0	2 3,8 4)2)4)6			2,7
Dry and wet concrete Installation safety factor Flooded hole	C25/30 C30/37 C35/45	TRk,cr γinst TRk,cr γinst	[N/mm ²] [-] [N/mm ²]	4,3	4,3	4,3	1,0 1,0 1,0 1,0 1,0	2 3,8 4)2)4)6)7			2,7
Dry and wet concrete Installation safety factor Flooded hole Installation safety factor	C25/30 C30/37 C35/45 C40/50	TRk,cr γinst TRk,cr γinst	[N/mm ²] [-] [N/mm ²]	4,3	4,3	4,3	1,0 1,0 1,0 1,0 1,0 1,0	2 3,8 ,4)2)4)6)7			2,7
Dry and wet concrete Installation safety factor Flooded hole Installation safety factor	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 T1: 24°C / 40°C	TRk,cr γinst TRk,cr γinst	[N/mm²] [-] [N/mm²] [-]	4,3	4,3	4,3	1,0 1,0 1,0 1,0 1,0 1,0 1,0	2 3,8 4)2)4)6)7)8)9			2,7
Dry and wet concrete Installation safety factor Flooded hole Installation safety factor Factor for concrete	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	TRk,cr γinst TRk,cr γinst	[N/mm ²] [-] [N/mm ²]	4,3	4,3	4,3	1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	2 3,8 4 0)2 0)4 0)6 0)7 0)8 0)9			2,7
Dry and wet concrete Installation safety factor Flooded hole Installation safety factor Factor for concrete Factor for influence of sustained	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 T1: 24°C / 40°C	TRk,cr γinst TRk,cr γinst Ψc	[N/mm²] [-] [N/mm²] [-]	4,3	4,3	4,3	1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,7	2 3,8 4 0)2 0)4 0)6 0)7 0)8 0)9			2,7
Dry and wet concrete Installation safety factor Flooded hole Installation safety factor Factor for concrete Factor for influence of sustained oad for a working life 50 years	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 T1: 24°C / 40°C	TRk,cr γinst TRk,cr γinst Ψc	[N/mm²] [-] [N/mm²] [-]	4,3	4,3	4,3	1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,7	2 3,8 4 0)2 0)4 0)6 0)7 0)8 0)9			2,7
Dry and wet concrete Installation safety factor Flooded hole Installation safety factor Factor for concrete Factor for influence of sustained	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 T1: 24°C / 40°C	TRk,cr γinst TRk,cr γinst Ψc	[N/mm²] [-] [N/mm²] [-]	4,3	4,3	4,3	1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,7	2 3,8 4 0)2 0)4 0)6 0)7 0)8 0)9			2,7
Dry and wet concrete Installation safety factor Flooded hole Installation safety factor Factor for concrete Factor for influence of sustained oad for a working life 50 years	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 T1: 24°C / 40°C	TRk,cr γinst TRk,cr γinst Ψc	[N/mm²] [-] [N/mm²] [-]	4,3	4,3	4,3	1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,7	2 3,8 4 02 04 06 07 08 09 75 73	3,5	3,0	2,7
Dry and wet concrete Installation safety factor Flooded hole Installation safety factor Factor for concrete Factor for influence of sustained oad for a working life 50 years	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 T1: 24°C / 40°C T2: 50°C / 80°C	TRk,cr γinst TRk,cr γinst Ψc	[N/mm²] [-] [N/mm²] [-]	4,3	4,3	4,3	1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,7	2 3,8 4 02 04 06 07 08 09 75 73		3,0	2,7

Table C5: Design method EN 1992-4 Characteristic values of resistance to tension load of threaded rod

Concrete cone failure										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Factor for concrete cone failure for uncracked concrete	k _{ucr,N}	F 1	11							
Factor for concrete cone failure for cracked concrete	k _{cr,N}	[-]				7,7				
Edge distance	C _{cr,N}	[mm]	1,5h _{ef}							

Splitting failure										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Edge distance c _{cr}	r,sp	[mm]	1,5h _{ef}							
Spacing s _{cr}	r,sp	[mm]	3,0hef							

MO-VH, MO-VHW, MO-VHS	
Performances	Annex C 4
Hammer drilling, Dustless drilling	, uniox o
Characteristic resistance for tension loads - threaded rod	

Table C6: Design method EN 1992-4 Characteristic values of resistance to tension load of rebar

Combined pullout and concrete cone failure in uncracked concrete C20/25 Hammer drilling Ø16 | Ø20 Ø32 Size Ø8 Ø10 Ø12 Ø25 Characteristic bond resistance in uncracked concrete for a working life of 50 years and 100 years Dry and wet concrete τ_{Rk,ucr} [N/mm²] 12,4 10,6 10,6 10,3 7,0 5,5 8,4 Installation safety factor 1,2 γinst [-] Flooded hole τ_{Rk,ucr} [N/mm²] 12,4 10,6 10,6 10,3 8,4 7,0 5,5 Installation safety factor 1,4 [-] Yinst Size Ø8 Ø10 Ø12 Ø16 Ø20 Ø25 Ø32 Characteristic bond resistance in cracked concrete for a working life of 50 years τ_{Rk,ucr} [N/mm²] 8,6 6,5 5,4 4,6 4,6 3,5 Dry and wet concrete 7,2 Installation safety factor 1,2 [-] γinst τ_{Rk,ucr} [N/mm²] 7,2 6,5 5,4 4,6 4,6 3,5 Flooded hole 8,6 1,4 Installation safety factor Characteristic bond resistance in cracked concrete for a working life of 100 years Dry and wet concrete τ_{Rk,ucr} [N/mm²] 5,0 3,0 3,0 2,3 3,5 Installation safety factor 1,2 [-] γinst Flooded hole τ_{Rk,ucr} [N/mm²] 5,0 4,1 4,1 3,5 3,0 3,0 2,3 Installation safety factor [-] 1,4 γinst **Dustless drilling** Size Ø8 Ø10 Ø12 Ø16 | Ø20 Ø25 Ø32 Characteristic bond resistance in uncracked concrete for a working life of 50 years and 100 years Dry and wet concrete $\tau_{Rk,ucr}$ [N/mm²] 12,4 | 10,6 | 10,6 | 10,3 7,0 5,5 Installation safety factor 1,2 [-] Yinst 9,4 Flooded hole τ_{Rk,ucr} [N/mm²] 11,6 9,4 9,0 7,4 6,0 4,7 Installation safety factor [-] 1,4 Yinst Ø8 Ø10 Ø12 Ø16 Ø20 Ø25 Size Ø32 Characteristic bond resistance in cracked concrete for a working life of 50 years τ_{Rk,ucr} [N/mm²] Dry and wet concrete 8,6 7,2 6,5 5,4 4,6 4,6 3,5 Installation safety factor 1,2 γinst [-] Flooded hole τ_{Rk,ucr} [N/mm²] 8,6 7,2 6.5 5,4 4.6 4,6 3,5 Installation safety factor 1,4 [-] γinst Characteristic bond resistance in cracked concrete for a working life of 100 years τ_{Rk,ucr} [N/mm²] Dry and wet concrete 5,0 4,1 4,1 3,5 3,0 3,0 2,3 Installation safety factor 1,2 γinst τ_{Rk,ucr} [N/mm²] Flooded hole 5,0 4,1 4,1 3,5 3,0 3,0 2,3 Installation safety factor [-] 1,4 γinst

Factor for concrete	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	[-]	1,02 1,04 1,06 1,07 1,08 1,09
Factor for influence of sustained load for a working life 50 years	T1: 24°C / 40°C T2: 50°C / 80°C Ψ ⁰ sus	[-]	0,75 0,73

MO-VH, MO-VHW, MO-VHS	
Performances	Annex C 5
Hammer drilling, Dustless drilling	Aimox o o
Characteristic resistance for tension loads - rebar	

Table C7: Design method EN 1992-4 Characteristic values of resistance to tension load of rebar MO-VHW with installation temperature < -10°C

Combined pullout and concrete cone failure in uncracked concrete C20/25											
Hammer drilling											
Size				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32	
Characteristic bond resistanc	e in uncracked o	conc	rete for a	a worki	na life	of 50 v	ears a	nd 100	vears		
Dry and wet concrete		Rk,ucr	[N/mm ²]	11,8	10,1	10,1	9,8	8,0	6,7	5,2	
Installation safety factor	٠	γinst	[-]	11,0	10,1	10,1	1,2	0,0	0,1	0,2	
Flooded hole	τι		[N/mm ²]	11,8	10,1	10,1	9,8	8,0	6,7	5,2	
Installation safety factor		γinst	[-]	, 0	, .	, .	1,4	0,0	٥,.	_ 	
Size		711100		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32	
Characteristic bond resistanc	e in cracked con	ncret	te for a w	orking							
Dry and wet concrete			F1 1/ 27	8,2	6,8	6,2	5,2	4,4	4,4	3,3	
Installation safety factor		γinst	[-]	-,	-,-	-,	1,2	,	,	- , -	
Flooded hole	τι		[N/mm ²]	8,2	6,8	6,2	5,2	4,4	4,4	3,3	
Installation safety factor		γinst	[-]		· · ·	· · ·	1,4	· · · · · · · · · · · · · · · · · · ·	•	•	
Characteristic bond resistanc	e in cracked con	_	te for a w	orkina	life of	100 ve	ars				
Dry and wet concrete			[N/mm ²]	4,8	3,9	3,9	3,3	2,8	2,8	2,1	
Installation safety factor		γinst	[-]	,			1,2				
Flooded hole	τι	Rk,ucr	[N/mm ²]	4,8	3,9	3,9	3,3	2,8	2,8	2,1	
Installation safety factor		γinst	[-]	,			1,4	,			
Dustless drilling											
Size				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32	
Characteristic bond resistanc	e in uncracked o	conc	rete for a	a worki	na life		ears a		vears		
Dry and wet concrete			[N/mm ²]	11,8	10,1	10,1	9,8	8,0	6,7	5,2	
Installation safety factor	•	γinst	[-]	, 0	1.0,.	, .	1,2	0,0	٥,.	-,-	
Flooded hole	τι	Rk,ucr	[N/mm ²]	11,1	9,0	9,0	8,6	7,0	5,5	4,4	
Installation safety factor		γinst	[-]				1,4		,		
							1,4				
Size				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32	
Size	e in cracked con		. 1				Ø16	Ø20	Ø25	Ø32	
Size Characteristic bond resistanc		ncret	te for a w	orking	life of	50 yea	Ø16 rs				
Size Characteristic bond resistanc Dry and wet concrete		ncret	. 1				Ø16	Ø20	Ø25	Ø32 3,3	
Size Characteristic bond resistanc	τι	n cret Rk,ucr γinst	te for a w [N/mm²] [-]	orking	life of	50 yea	Ø16 rs 5,2				
Size Characteristic bond resistanc Dry and wet concrete Installation safety factor	τι	n cret Rk,ucr γinst	te for a w [N/mm²]	orking 8,2	life of 6,8	50 yea 6,2	Ø16 rs 5,2 1,2	4,4	4,4	3,3	
Size Characteristic bond resistanc Dry and wet concrete Installation safety factor Flooded hole	τι τι	ncret Rk,ucr Yinst Rk,ucr Yinst	te for a w [N/mm²] [-] [N/mm²]	orking 8,2 8,2	6,8 6,8	50 yea 6,2	Ø16 rs 5,2 1,2 5,2 1,4	4,4	4,4	3,3	
Size Characteristic bond resistanc Dry and wet concrete Installation safety factor Flooded hole Installation safety factor	τι e in cracked con	ncret Rk,ucr Yinst Rk,ucr Yinst	te for a w [N/mm²] [-] [N/mm²]	orking 8,2 8,2	6,8 6,8	50 yea 6,2	Ø16 rs 5,2 1,2 5,2 1,4	4,4	4,4	3,3	
Size Characteristic bond resistanc Dry and wet concrete Installation safety factor Flooded hole Installation safety factor Characteristic bond resistanc	τι τe in cracked con τι	ret FRk,ucr γinst FRk,ucr γinst FRk,ucr γinst	te for a w [N/mm²] [-] [N/mm²] [-] te for a w [N/mm²] [-]	8,2 8,2 vorking	6,8 6,8	50 yea 6,2 6,2	Ø16 rs 5,2 1,2 5,2 1,4 ars	4,4	4,4	3,3	
Size Characteristic bond resistanc Dry and wet concrete Installation safety factor Flooded hole Installation safety factor Characteristic bond resistanc Dry and wet concrete	τι τe in cracked con τι	ret FRk,ucr γinst FRk,ucr γinst FRk,ucr γinst	te for a w [N/mm²] [-] [N/mm²] [-] te for a w [N/mm²] [-]	8,2 8,2 vorking	6,8 6,8	50 yea 6,2 6,2	Ø16 rs 5,2 1,2 5,2 1,4 ars 3,3	4,4	4,4	3,3	
Characteristic bond resistanc Dry and wet concrete Installation safety factor Flooded hole Installation safety factor Characteristic bond resistanc Dry and wet concrete Installation safety factor	τι τe in cracked con τι	ret FRk,ucr γinst FRk,ucr γinst FRk,ucr γinst	te for a w [N/mm²] [-] [N/mm²] [-] te for a w [N/mm²]	8,2 8,2 8,2 vorking 4,8	6,8 6,8 life of	50 yea 6,2 6,2 100 ye 3,9	Ø16 rs 5,2 1,2 5,2 1,4 ars 3,3 1,2	4,4	4,4	3,3	
Size Characteristic bond resistanc Dry and wet concrete Installation safety factor Flooded hole Installation safety factor Characteristic bond resistanc Dry and wet concrete Installation safety factor Flooded hole	τι te in cracked con τι	Pinst Rk,ucr γinst Rk,ucr γinst Rk,ucr γinst Rk,ucr γinst Rk,ucr	te for a w [N/mm²] [-] [N/mm²] [-] te for a w [N/mm²] [-] [N/mm²]	8,2 8,2 8,2 vorking 4,8	6,8 6,8 life of	50 yea 6,2 6,2 100 ye 3,9	Ø16 rs 5,2 1,2 5,2 1,4 ars 3,3 1,2 3,3 1,4	4,4	4,4	3,3	
Size Characteristic bond resistanc Dry and wet concrete Installation safety factor Flooded hole Installation safety factor Characteristic bond resistanc Dry and wet concrete Installation safety factor Flooded hole	τι te in cracked con τι Τι C25/30	Pinst Rk,ucr γinst Rk,ucr γinst Rk,ucr γinst Rk,ucr γinst Rk,ucr	te for a w [N/mm²] [-] [N/mm²] [-] te for a w [N/mm²] [-] [N/mm²]	8,2 8,2 8,2 vorking 4,8	6,8 6,8 life of	50 yea 6,2 6,2 100 ye 3,9	Ø16 rs 5,2 1,2 5,2 1,4 ars 3,3 1,2 3,3 1,4 1,02	4,4	4,4	3,3	
Characteristic bond resistanc Dry and wet concrete Installation safety factor Flooded hole Installation safety factor Characteristic bond resistanc Dry and wet concrete Installation safety factor Flooded hole Installation safety factor	TI TI TI TI TI C25/30 C30/37 C35/45	Rk,ucr γinst Rk,ucr γinst CRk,ucr γinst CRk,ucr γinst CRk,ucr γinst CRk,ucr γinst	te for a w [N/mm²] [-] [N/mm²] [-] te for a w [N/mm²] [-] [-] [N/mm²] [-]	8,2 8,2 8,2 vorking 4,8	6,8 6,8 life of	50 yea 6,2 6,2 100 ye 3,9	Ø16 rs 5,2 1,2 5,2 1,4 ars 3,3 1,2 3,3 1,4 1,02 1,04	4,4	4,4	3,3	
Size Characteristic bond resistanc Dry and wet concrete Installation safety factor Flooded hole Installation safety factor Characteristic bond resistanc Dry and wet concrete Installation safety factor Flooded hole	TI TI TI C25/30 C30/37 C35/45	Pinst Rk,ucr γinst Rk,ucr γinst Rk,ucr γinst Rk,ucr γinst Rk,ucr	te for a w [N/mm²] [-] [N/mm²] [-] te for a w [N/mm²] [-] [N/mm²]	8,2 8,2 8,2 vorking 4,8	6,8 6,8 life of	50 yea 6,2 6,2 100 ye 3,9	Ø16 rs 5,2 1,2 5,2 1,4 ars 3,3 1,2 3,3 1,4 1,02 1,04 1,06	4,4	4,4	3,3	
Characteristic bond resistanc Dry and wet concrete Installation safety factor Flooded hole Installation safety factor Characteristic bond resistanc Dry and wet concrete Installation safety factor Flooded hole Installation safety factor	TI TI TI TI TI C25/30 C30/37 C35/45	Rk,ucr γinst Rk,ucr γinst CRk,ucr γinst CRk,ucr γinst CRk,ucr γinst CRk,ucr γinst	te for a w [N/mm²] [-] [N/mm²] [-] te for a w [N/mm²] [-] [-] [N/mm²] [-]	8,2 8,2 8,2 vorking 4,8	6,8 6,8 life of	50 yea 6,2 6,2 100 ye 3,9	Ø16 rs 5,2 1,2 5,2 1,4 ars 3,3 1,2 3,3 1,4 1,02 1,04 1,06 1,07	4,4	4,4	3,3	
Characteristic bond resistanc Dry and wet concrete Installation safety factor Flooded hole Installation safety factor Characteristic bond resistanc Dry and wet concrete Installation safety factor Flooded hole Installation safety factor	C25/30 C30/37 C35/45 C40/50 C45/55	Rk,ucr γinst Rk,ucr γinst CRk,ucr γinst CRk,ucr γinst CRk,ucr γinst CRk,ucr γinst	te for a w [N/mm²] [-] [N/mm²] [-] te for a w [N/mm²] [-] [-] [N/mm²] [-]	8,2 8,2 8,2 vorking 4,8	6,8 6,8 life of	50 yea 6,2 6,2 100 ye 3,9	Ø16 rs 5,2 1,2 5,2 1,4 ars 3,3 1,2 3,3 1,4 1,02 1,04 1,06 1,07 1,08	4,4	4,4	3,3	
Characteristic bond resistanc Dry and wet concrete Installation safety factor Flooded hole Installation safety factor Characteristic bond resistanc Dry and wet concrete Installation safety factor Flooded hole Installation safety factor	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	Rk,ucr γinst Rk,ucr γinst CRk,ucr γinst CRk,ucr γinst CRk,ucr γinst CRk,ucr γinst	te for a w [N/mm²] [-] [N/mm²] [-] te for a w [N/mm²] [-] [-] [N/mm²] [-]	8,2 8,2 8,2 vorking 4,8	6,8 6,8 life of	50 yea 6,2 6,2 100 ye 3,9	Ø16 rs 5,2 1,2 5,2 1,4 ars 3,3 1,2 3,3 1,4 1,02 1,04 1,06 1,07	4,4	4,4	3,3	

MO-VHW	
Performances	Annex C 6
Hammer drilling, Dustless drilling Characteristic resistance for tension loads - rebar	

Table C8: Design method EN 1992-4 Characteristic values of resistance to tension load of rebar

Concrete cone failure			
Factor for concrete cone failure	$k_{\text{ucr},N}$	[-]	11
Edge distance	Ccr,N	[mm]	1,5h _{ef}

Splitting failure									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Edge distance	Ccr,sp	[mm]	1,5h _{ef}						
Spacing	Scr,sp	[mm]	3,0h _{ef}						

MO-VH, MO-VHW, MO-VHS	
Performances	Annex C 7
Hammer drilling, Dustless drilling	Aumox 6 1
Characteristic resistance for tension loads - rebar	

Table C9: Design method EN 1992-4

Characteristic values of resistance to tension load of threaded rod

Combined pullout and concrete cone failure in concrete C20/25

			M8	M10	M12	M16	M20	M24	M27	M30
ncracked	cond	rete for a	work	ing lif	e of 50	years	and	100 ye	ars	
	τRk,ucr	[N/mm ²]	11,0	10,0	10,0	9,0	8,5	8,0	6,5	5,5
	γinst	[-]				1,	,0			
	τ _{Rk,ucr}	[N/mm ²]	11,0	10,0	10,0	9,0	8,5	8,0	6,5	5,5
	γinst	[-]				1,	,4			
÷			M1	0	M12	M	16	M20	N	124
racked co	ncre	te for a wo	orking	life o	f 50 ye	ears				
	$\tau_{Rk,cr}$	[N/mm ²]	6,0)	6,5	5,	5	5,5		5,5
	γinst	[-]								
	τRk,cr	[N/mm ²]	6,0)	6,5	5,	5	5,5		5,5
	γinst	[-]				1,	,4			
racked co	ncre	te for a wo	orking	life o	f 100 y	/ears				
	τ _{Rk,cr}	[N/mm ²]	5,0)	5,0	4,	,0	4,5		4,5
	γinst	[-]								
	$\tau_{Rk,cr}$		5,0)	5,0			4,5		4,5
	γinst	[-]				1,	,4			
C25/30						1.0)2			
						,				
C40/50	ψс	[-]								
C45/55										
C50/60						1,0	09			
	0	r 1				٥.	77			
	Ψ°sus	[-]				0,	1 1			
concrete	k _{ucr.N}	r.,				1′	1			
		[-]								
	Ccr,N	[mm]								
	C25/30 C30/37 C35/45 C40/50 C45/55	TRk,ucr	TRk,ucr [N/mm²] γinst [-] TRk,ucr [N/mm²] γinst [-] racked concrete for a weather the second se	TRK, ucr [N/mm²] 11,0	TRK,ucr [N/mm²] 11,0 10,0	TRK,ucr [N/mm²] 11,0 10,0	TRK, ucr [N/mm²] 11,0 10,0 10,0 9,0 1,0 10,0 10,0 9,0 1,0 10,	TRK, ucr [N/mm²] 11,0 10,0 10,0 9,0 8,5	Tracked concrete for a working life of 50 years and 100 years Track, concrete for a working life of 50 years and 100 years Track, concrete for a working life of 50 years Tracked concrete for a working life of 50 years Tracked concrete for a working life of 50 years Tracked concrete for a working life of 50 years Tracked concrete for a working life of 50 years Track, concrete for a working life of 50 years Track, concrete for a working life of 100 years Tracked concrete for a working life of	TRK,UCF N/mm² 11,0 10,0 10,0 9,0 8,5 8,0 6,5

-										
Splitting failure										
Size			М8	M10	M12	M16	M20	M24	M27	M30
Edge distance	C _{cr,sp}	[mm]	1,5h _{ef}							
Spacing	Scr,sp	[mm]	3,0h _{ef}							

MO-VH, MO-VHW, MO-VHS	
Performances	Annex C 8
Diamond core drilling	Aumox 9 0
Characteristic resistance for tension loads - threaded rod	

Table C10: Design method EN 1992-4

Characteristic values of resistance to tension load of threaded rod for MO-VHW with installation temperature < -10°C

Combined pullout and concrete cone failure in concrete C20/25

Diamond core drilling											
Size				M8	M10	M12	M16	M20	M24	M27	M30
Characteristic bond resistance in u	ncracked	conc	rete for a	worki	ing life	e of 50	years	s and	100 ye	ears	
Dry and wet concrete		$ au_{Rk,ucr}$	[N/mm ²]	10,0	10,0	10,0	8,5	8,0	7,5	6,0	5,0
Installation safety factor		γinst	[-]				1,	0			
Flooded hole		τ _{Rk,ucr}	[N/mm ²]	10,0	10,0	10,0	8,5	8,0	7,5	6,0	5,0
Installation safety factor		γinst	[-]				1,	4			
Size				M1	0	M12	M	16	M20	N	/124
Characteristic bond resistance in c	racked co	ncret	te for a wo	orking	life o	f 50 ye	ears				
Dry and wet concrete		τRk,cr	[N/mm ²]	5,5	5	6,0	5	,0	5,5		5,0
Installation safety factor		γinst	[-]				1,				
Flooded hole		τ _{Rk,cr}	[N/mm ²]	5,5	5	6,0		,0	5,5		5,0
Installation safety factor		γinst	[-]				1,	4			
Characteristic bond resistance in ci	racked co	ncre	te for a wo	orking	life o	f 100 y	years				
Dry and wet concrete		τRk,cr	[N/mm ²]	5,0)	5,0	4	,0	4,0		4,0
Installation safety factor		γinst	[-]				1,	0			
Flooded hole		τRk,cr	[N/mm ²]	5,0)	5,0	4	,0	4,0		4,0
Installation safety factor		γinst	[-]				1,	4			
	C25/30						1,0)2			
	C30/37						1,0				
Factor for	C35/45						1,0				
cracked and uncracked concrete	C40/50	Ψс	[-]				1,0				
	C45/55			1,08							
	C50/60						1,0				
Factor for influence of sustained load for a working life 50 years		ψ^0 sus	[-]				0,7	77			•

Concrete cone failure		
	See Annex C 8	

Splitting failure		
	See Annex C 8	

MO-VHW	
Performances	Annex C 9
Diamond core drilling	Aumox 9 9
Characteristic resistance for tension loads - threaded rod	

Table C11: Design method EN 1992-4 Characteristic values of resistance to tension load of rebar

Combined pullout and concrete cone failure in uncracked concrete C20/25

Diamond core drilling										
Size				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Characteristic bond resistance in	uncracked	COI	ncrete for	a worki	ng life	of 50 y	ears a	nd 100	years	
Dry and wet concrete	τR	Rk,ucr	[N/mm ²]	10,0	9,5	9,0	8,5	8,0	6,5	4,0
Installation safety factor		γinst	[-]				1,2			
Flooded hole	τκ	Rk,ucr	[N/mm ²]	10,0	9,5	9,0	8,5	8,0	6,0	3,5
Installation safety factor		γinst	[-]				1,4			
Size				Ø10	Ø1	12	Ø16	Ø2	0	Ø25
Characteristic bond resistance in	cracked co	oncr	rete for a v	working	life of	50 yea	rs			
Dry and wet concrete	τ	Rk,cr	[N/mm ²]	5,5	6,	0	5,0	5,5	5	4,5
Installation safety factor		γinst					1,2	_		
Flooded hole	τ	Rk,cr	[N/mm ²]	5,5	6,	0	5,0	5,5	5	4,5
Installation safety factor		γinst	[-]				1,4			
Characteristic bond resistance in	cracked co	oncr	rete for a v	working	life of	100 ye	ars			
Dry and wet concrete	τ	Rk,cr	[N/mm ²]	5,0	4,	5	4,0	4,5	5	3,5
Installation safety factor		γinst	[-]				1,2			
Flooded hole	τ	Rk,cr	[N/mm ²]	5,0	4,	5	4,0	4,5	5	3,5
Installation safety factor		γinst	[-]				1,4			
Factor for cracked concrete	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	Ψο	[-]				1,02 1,04 1,06 1,07 1,08 1,09			
Factor for influence of sustained load for a working life 50 years	Ч	$ u^0$ sus	[-]				0,77			

Concrete cone failure			
Factor for concrete cone failure for uncracked concrete	k _{ucr,N}	[]	11
Factor for concrete cone failure for cracked concrete	k _{cr,N}	[-]	7,7
Edge distance	Ccr,N	[mm]	1,5h _{ef}

Splitting failure									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Edge distance	Ccr,sp	[mm]	1,5h _{ef}						
Spacing	S _{cr,sp}	[mm]	3,0h _{ef}						

MO-VH, MO-VHW, MO-VHS	
Performances	Annex C 10
Diamond core drilling	Alliox 6 16
Characteristic resistance for tension loads - rebar	

Table C12: Design method EN 1992-4 Characteristic values of resistance to tension load of rebar for MO-VHW with installation temperature < -10°C

Combined pullout and concrete cone failure in uncracked concrete C20/25

Diamond core drilling									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Characteristic bond resistance in u	ıncracked coı	ncrete for	a work	ing life	e of 50	years a	ınd 100	years	
Dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	10,0	9,0	8,5	8,0	7,5	6,5	4,0
Installation safety factor	γinst	[-]				1,2			
Flooded hole	τ _{Rk,ucr}	[N/mm ²]	10,0	9,0	8,5	8,0	7,5	5,5	3,5
Installation safety factor	γinst	[-]				1,4			
Size			Ø10	Q	012	Ø16	Ø2	20	Ø25
Characteristic bond resistance in o	cracked concr	ete for a	working	g life o	f 50 ye	ars			
Dry and wet concrete	τ _{Rk,cr}	[N/mm ²]	5,5	į	5,5	5,0	5,	5	4,0
Installation safety factor	γinst	[-]				1,2			
Flooded hole	τ _{Rk,cr}	[N/mm ²]	5,5	ţ	5,5	5,0	5,	5	4,0
Installation safety factor	γinst	[-]				1,4			
Characteristic bond resistance in o	cracked concr	ete for a	working	g life o	f 100 y	ears			
Dry and wet concrete	τ _{Rk,cr}	[N/mm ²]	5,0	4	1,5	3,5	4,0	0	3,0
Installation safety factor	γinst	[-]				1,2			
Flooded hole	τ _{Rk,cr}	[N/mm ²]	5,0	4	1,5	3,5	4,0	0	3,0
Installation safety factor	γinst	[-]				1,4			
Factor for cracked concrete	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	[-]				1,02 1,04 1,06 1,07 1,08 1,09			
Factor for influence of sustained load for a working life 50 years	$\Psi^0_{ ext{sus}}$	[-]				0,77			

Concrete cone failure		
	See Annex C 10	

Splitting failure		
	See Annex C 10	

MO-VHW	
Performances	Annex C 11
Diamond core drilling	Auniox 6 11
Characteristic resistance for tension loads - rebar	

Table C13: Design method EN 1992-4 Characteristic values of resistance to shear load of threaded rod

Steel failure without lever arm										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.6	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
Partial safety factor	γMs	[-]				1,	67			
Steel grade 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Partial safety factor	γMs	[-]				1,	25			
Steel grade 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs	[-]				1,	25			
Steel grade 10.9	$V_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	γMs	[-]				1	,5			
Stainless steel grade A2-70, A4-70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	161	196
Partial safety factor	γMs	[-]				1,	56			
Stainless steel grade A4-80	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs	[-]				1,3	33			
Stainless steel grade 1.4529	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	161	196
Partial safety factor	γMs	[-]				1,	25			
Stainless steel grade 1.4565	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	161	196
Partial safety factor	γMs	[-]	1,56							
Characteristic resistance of group of faste	eners									
Ductility factor $k_7 = 1,0$ for steel with ru	pture elongat	tion A	s > 8%							

Steel failure with lever arm										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.6	$M^{o}_{Rk,s}$	[N.m]	15	30	52	133	260	449	666	900
Partial safety factor	γMs	[-]				1,	67			
Steel grade 5.8	M^o_Rk,s	[N.m]	19	37	66	166	325	561	832	1125
Partial safety factor	γMs	[-]				1,	25			
Steel grade 8.8	$M^{o}_{Rk,s}$	[N.m]	30	60	105	266	519	898	1332	1799
Partial safety factor	γMs	[-]				1,	25			
Steel grade 10.9	M^o_Rk,s	[N.m]	37	75	131	333	649	1123	1664	2249
Partial safety factor	γMs	[-]				1,	50			
Stainless steel grade A2-70, A4-70	M^o_Rk,s	[N.m]	26	52	92	233	454	786	1165	1574
Partial safety factor	γMs	[-]				1,	56			
Stainless steel grade A4-80	M^o_Rk,s	[N.m]	30	60	105	266	519	898	1332	1799
Partial safety factor	γMs	[-]				1,	33			
Stainless steel grade 1.4529	$M^{o}_{Rk,s}$	[N.m]	26	52	92	233	454	786	1165	1574
Partial safety factor	γMs	[-]				1,	25			
Stainless steel grade 1.4565	$M^{o}_{Rk,s}$	[N.m]	26	52	92	233	454	786	1165	1574
Partial safety factor	γMs	[-]	-] 1,56							
Concrete pry-out failure										
Factor for resistance to pry-out failure	k ₈	[-]				2	2			

Concrete edge failure										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Outside diameter of fastener dr	nom	[mm]	8	10	12	16	20	24	27	30
Effective length of fastener	l f	[mm]			m	in (h _{ef}	8 d _{nor}	n)		

MO-VH, MO-VHW, MO-VHS	
Performances Design according to EN 1992-4 Characteristic resistance for shear loads - threaded rod	Annex C 12

Table C14: Design method EN 1992-4 Characteristic values of resistance to shear load of rebar

Steel failure without lever arm									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	$V_{Rk,s}$	[kN]	14	22	31	55	86	135	221
Partial safety factor	γMs	[-]				1,5			
Characteristic resistance of group of fasteners									
Ductility factor $k_7 = 1,0$ for steel with rupture elor	ngation	า A ₅ > 8	3%						

Steel failure with lever arm								
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	Mo _{Rk,s} [N.m]	33	65	112	265	518	1013	2122
Partial safety factor	γMs [-]				1,5			
Concrete pry-out failure								
Factor for resistance to pry-out failure	k ₈ [-]				2			

Concrete edge failure									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Outside diameter of fastener d	nom	[mm]	8	10	12	16	20	25	32
Effective length of fastener	l f	[mm]			min	(h _{ef} , 8 c	nom)		

MO-VH, MO-VHW, MO-VHS	
Performances Design according to EN 1992-4	Annex C 13
Characteristic resistance for shear loads - rebar	

Table C15: Displacement of threaded rod under tension and shear load - Hammer drilling, dustless drilling

Size		M8	M10	M12	M16	M20	M24	M27	M30
Tensio	on load		-	-	-				
Uncra	cked cond	rete							
δ_{N0}	[mm/kN]	0,03	0,03	0,03	0,03	0,02	0,02	0,02	0,02
δ_{N^∞}	[mm/kN]	0,12	0,11	0,08	0,05	0,03	0,03	0,02	0,02
Crack	ed concre	te	<u>-</u>	<u>-</u>	<u>-</u>			_	_
δ_{N0}	[mm/kN]	0,09	0,08	0,07	0,07	0,05	0,04	0,04	0,04
δ_{N^∞}	[mm/kN]	0,64	0,51	0,36	0,25	0,15	0,11	0,10	0,09
Shear	load		-	<u>-</u>	<u>-</u>	_	_	-	
δνο	[mm/kN]	0,48	0,30	0,20	0,11	0,10	0,08	0,06	0,05
δ∨∞	[mm/kN]	0,72	0,45	0,30	0,17	0,14	0,12	0,10	0,08

Table C16: Displacement of threaded rod under tension and shear load - Diamond core drilling

Size		M8	M10	M12	M16	M20	M24	M27	M30
Tensio	on load			-	-	-	-	-	
Uncra	cked cond	rete							
δ_{N0}	[mm/kN]	0,02	0,02	0,03	0,02	0,01	0,01	0,02	0,02
δ_{N^∞}	[mm/kN]	0,11	0,07	0,05	0,03	0,02	0,02	0,02	0,02
Crack	ed concre	te							
δ_{N0}	[mm/kN]		0,07	0,05	0,05	0,03	0,03		
δ_{N^∞}	[mm/kN]		0,37	0,23	0,16	0,10	0,07		
Shear	load		_	<u>-</u>	<u>-</u>	-	-	<u>-</u>	
δνο	[mm/kN]	0,48	0,30	0,20	0,11	0,10	0,08	0,06	0,05
δ∨∞	[mm/kN]	0,72	0,45	0,30	0,17	0,14	0,12	0,10	0,08

Table C17: Displacement of rebar under tension and shear load - Hammer drilling, dustless drilling

Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Tensi	on load							
Uncra	cked cond	rete						
δ_{N0}	[mm/kN]	0,04	0,04	0,03	0,03	0,03	0,03	0,02
δ _{N∞}	[mm/kN]	0,12	0,12	0,08	0,05	0,04	0,03	0,03
Crack	ed concre	te						
δ_{N0}	[mm/kN]	0,08	0,09	0,09	0,06	0,06	0,04	0,04
δ _{N∞}	[mm/kN]	0,52	0,50	0,38	0,25	0,19	0,13	0,11
Shear	load							
δνο	[mm/kN]	0,05	0,04	0,03	0,02	0,01	0,01	0,01
δ∨∞	[mm/kN]	0,08	0,06	0,05	0,03	0,02	0,01	0,01

Table C18: Displacement of rebar under tension and shear load - Diamond core drilling

Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Tensi	on load			-	-	-	-	-
Uncra	cked cond	rete						
δ_{N0}	[mm/kN]	0,04	0,04	0,03	0,02	0,02	0,02	0,02
δ _{N∞}	[mm/kN]	0,10	0,07	0,05	0,03	0,02	0,02	0,02
Crack	ed concre	te		_	_	_	_	-
δνο	[mm/kN]		0,07	0,06	0,04	0,03	0,03	
δ _{N∞}	[mm/kN]		0,34	0,23	0,16	0,09	0,07	
Shear	load	3		3	3	3	<u>-</u>	-
δνο	[mm/kN]	0,05	0,04	0,03	0,02	0,01	0,01	0,01
δ∨∞	[mm/kN]	0,08	0,06	0,05	0,03	0,02	0,01	0,01

MO-VH, MO-VHW, MO-VHS	
Performances Displacement	Annex C 14

Size			M8	M10	M12	M16	M20	M24	M27	M30
Tension load				•	•			•	•	
Steel failure										
Characteristic resistance grade 4.6	$N_{Rk,s,C1}$	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs	[-]			1		00	I		1
Characteristic resistance grade 5.8	N _{Rk,s,C1}	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	γMs	[-]			1	1,	50	I		1
Characteristic resistance grade 8.8	N _{Rk,s,C1}	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]				1,	50			
Characteristic resistance grade 10.9	N _{Rk,s,C1}	[kN]		58	84	157	245	353		
Partial safety factor	γMs	[-]				1,	33	•		
Characteristic resistance A2-70, A4-70	N _{Rk,s,C1}	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]		•		1,	87		•	
Characteristic resistance A4-80	N _{Rk,s,C1}	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]			1		60	I		1
Characteristic resistance 1.4529	N _{Rk,s,C1}	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]		1	1		50	I		1
Characteristic resistance 1.4565	N _{Rk,s,C1}	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]		I.	L	1,	87	ı		
Characteristic resistance to pull-out for a v		life of 50	years							
Dry, wet concrete and flooded hole		[N/mm ²]	4,5	5,5	5,5	5,5	4,2	5,0	2,3	1,8
Characteristic resistance to pull-out for a v	working	life of 10	0 year	s						
Dry, wet concrete and flooded hole		[N/mm ²]	2,9	3,8	3,8	4,0	2,6	3,8	1,6	1,2
Installation safety factor – Dry and wet concrete	γinst	[-]				1	,2	<u> </u>		
Installation safety factor – Flooded hole	γinst	[-]					,4			
Shear load										
Steel failure without lever arm										
Characteristic resistance grade 4.6	V _{Rk,s,C}	1 [kN]	6	7	10	23	30	40	43	54
Partial safety factor	γκ,s,c γм:		_	'	1 10		67	70	1 -10	0-1
Characteristic resistance grade 5.8	V _{Rk,s,C}		7	9	13	28	38	51	54	67
Partial safety factor	γκ,s,c γм:				1 10		25	01	UT	01
Characteristic resistance grade 8.8	V _{Rk,s,C}	+	11	14	21	45	61	81	86	108
Partial safety factor	γκ,s,c γм:		- ' '	17	1		25	01	_ 00	100
Characteristic resistance grade 10.9	V _{Rk,s,C}			18	26	56	76	101		1 /
Partial safety factor	γκ,s,c γм:			1 10	20		50	101		
Characteristic resistance A2-70 , A4-70	V _{Rk,s,C}		10	12	18	39	53	71	76	94
Partial safety factor	V RK,S,C γM:		10	12	1 10		56	/ !	70	J -
Characteristic resistance A4-80	V _{Rk,s,C}		11	14	21	45	61	81	86	108
Partial safety factor	γκ,s,c γм:		- ' '	17			33	01	1 00	100
Characteristic resistance 1.4529	V _{Rk,s,C}		10	12	18	39	53	71	76	94
Partial safety factor	ν κκ,s,υ γм:		10	12	10		25	/ 1	70	34
Characteristic resistance 1.4565	V _{Rk,s,C}		10	12	18	39	53	71	76	94
Partial safety factor	V Rk,s,C		10	14	10		56	_ / !	1 10	J 34
Characteristic shear load resistance V ₁			19 shal	l be mi	ıltiplied			duction	factor	
		zed comm				by lone	wing re	adolloi	i idoloi	
for hot-di	pgairain									
for hot-di Reduction factor for hot-dip galvanized rods	αv,h-dg,c		0,45	0,57	0,56	0,49	0,56	0,61	0,74	0,73

MO-VH, MO-VHW, MO-VHS	
Performances Hammer drilling, Dustless drilling Seismic performance category C1 – threaded rod	Annex C 15

Table C20: Seismic performance	category C1 rebar	 Hammer drilling, Dustless of 	Irillina

Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Tension load									
Steel failure									
Characteristic resistance rebar BSt 500 S	N _{Rk,s,C1}	[kN]	28	43	62	111	173	270	442
Partial safety factor	γMs	[-]				1,4			
Characteristic resistance to pull-out for a w	orking li	fe of 50 y	ears						
Dry, wet concrete and flooded hole	τRk,C1	[N/mm ²]	5,2	4,3	3,9	2,9	2,5	2,6	2,1
Characteristic resistance to pull-out for a w	orking li	fe of 100	years						
Dry, wet concrete and flooded hole	τRk,C1	[N/mm ²]	3,1	2,5	2,5	1,8	1,6	1,6	1,4
Installation safety factor – Dry and wet concrete	γinst	[-]				1,2			·
Installation safety factor – Flooded hole	γinst	[-]				1,4			

Shear load									
Steel failure without lever arm									
Characteristic resistance rebar BSt 500 S	$V_{Rk,s,C1}$	[kN]	9	12	17	27	43	86	114
Partial safety factor	γMs	[-]				1,5			
Factor for annular gap	$lpha_{\sf gap}$	[-]				0,5			

The anchor shall be used with minimum rupture elongation after fracture $A_5 \ge 9\%$.

MO-VH, MO-VHW, MO-VHS	
Performances Hammer drilling, Dustless drilling Seismic performance category C1 – rebar	Annex C 16

Table C21: Seismic performance category C2 of threaded rod - Hammer drilling, Dustless drilling

Size			M12	M16	M20
Tension load					
Steel failure					
Characteristic resistance grade 4.6	$N_{Rk,s,C2}$	[kN]	34	63	98
Partial safety factor	γMs	[-]		2,00	
Characteristic resistance grade 5.8	N _{Rk,s,C2}	[kN]	42	79	123
Partial safety factor	γMs	[-]		1,50	
Characteristic resistance grade 8.8	N _{Rk,s,C2}	[kN]	67	126	196
Partial safety factor	γMs	[-]		1,50	
Characteristic resistance grade 10.9	$N_{Rk,s,C2}$	[kN]	84	157	245
Partial safety factor	γMs	[-]		1,33	
Characteristic resistance A2-70, A4-70	N _{Rk,s,C2}	[kN]	59	110	172
Partial safety factor	γMs	[-]		1,87	
Characteristic resistance A4-80	N _{Rk,s,C2}	[kN]	67	126	196
Partial safety factor	γMs	[-]		1,60	
Characteristic resistance 1.4529	N _{Rk,s,C2}	[kN]	59	110	172
Partial safety factor	γMs	[-]		1,50	· ··=
Characteristic resistance 1.4565	N _{Rk,s,C2}	[kN]	59	110	172
Partial safety factor	γMs	[-]	- 00	1,87	
Characteristic resistance to pull-out for a v		fe of 50 v	pare	.,0.	
Dry, wet concrete and flooded hole		[N/mm ²]	1,2	1,4	1,6
Characteristic resistance to pull-out for a v				1,-	1,0
Dry, wet concrete and flooded hole	i i			1.0	1.0
	τRk,C2	_	0,8	1,0 1,2	1,0
Installation safety factor – Dry and wet concrete Installation safety factor – Flooded hole	γinst	[-] [-]		1,4	
Shear load	γinst	[-]		1,4	
Steel failure without lever arm					
	1/	FL-N 13	40	10	00
Characteristic resistance grade 4.6	$V_{Rk,s,C2}$	[kN]	13	18	28
Partial safety factor	γMs	[-]		1,67	
Characteristic resistance grade 5.8	$V_{Rk,s,C2}$	[kN]	16	22	35
Partial safety factor	γMs	[-]		1,25	
Characteristic resistance grade 8.8	$V_{Rk,s,C2}$	[kN]	25	36	56
Partial safety factor	γMs	[-]		1,25	1
Characteristic resistance grade 10.9	$V_{Rk,s,C2}$	[kN]	32	45	70
Partial safety factor	γMs	[-]		1,50	1
Characteristic resistance A2-70, A4-70	$V_{Rk,s,C2}$	[kN]	22	31	49
Partial safety factor	γMs	[-]		1,56	
Characteristic resistance A4-80	$V_{Rk,s,C2}$	[kN]	25	36	56
Partial safety factor	γMs	[-]		1,33	
Characteristic resistance 1.4529	$V_{Rk,s,C2}$	[kN]	22	31	49
Partial safety factor	γMs	[-]		1,25	
Characteristic resistance 1.4565	$V_{Rk,s,C2}$	[kN]	22	31	49
Partial safety factor	γMs	[-]		1,56	
Characteristic shear load resistance VRk,s,					lowing
reduction factor for hot-dip g	<u>jalvanize</u> d	commercia	al standard	rods	
Reduction factor for hot-dip galvanized rods	αv,h-dg,c2	[-]	0,46	0,61	0,61
Factor for annular gap	$lpha_{ extsf{gap}}$	[-]		0,5	

Table C22: Displacement under tensile and shear load - seismic category C2

Size		M12	M16	M20
δn,C2(50%)	[mm]	0,57	0,35	0,85
δ _{N,C2(100%)}	[mm]	7,62	6,75	7,28
δ _{V,C2(50%)}	[mm]	5,29	4,12	4,94
δv,C2(100%)	[mm]	10,20	9,05	10,99

The anchor shall be used with minimum rupture elongation after fracture $A_5 \ge 9\%$.

Note: Rebars are not qualified for seismic category C2 design

MO-VH, MO-VHW, MO-VHS	
Performances Hammer drilling, Dustless drilling Seismic performance category C2 – threaded rod	Annex C 17

Table C23: Seismic performance category C1 of threaded rod for

MO-VHW with installation temperature < -10°C - Hammer drilling, Dustless drilling

Size		M8	M10	M12	M16	M20	M24	M27	M30		
Tension load	-										
Steel failure											
See Annex C 15											
Characteristic resistance to pull-out for a worki	Characteristic resistance to pull-out for a working life of 50 years										
Dry, wet concrete and flooded hole τ _{Rk,C1}	[N/mm ²]	4,3	5,3	5,5	5,5	4,0	4,9	2,2	1,7		
Characteristic resistance to pull-out for a worki	ng life of	100 ye	ars								
Dry, wet concrete and flooded hole τ _{Rk,C1}	[N/mm ²]	2,8	3,7	3,7	3,9	2,4	3,7	1,5	1,2		
Installation safety factor γ_{inst}	[-]	See Annex C15									

Shear load			
Steel failure without lever arm			
		See Anne	ex C 15
Factor for annular gap	$\alpha_{\sf gap}$	[-]	0,5

The anchor shall be used with minimum rupture elongation after fracture $A_5 \ge 9\%$.

Table C24: Seismic performance category C1 of rebar for

MO-VHW with installation temperature < -10°C - Hammer drilling, Dustless drilling

Size	Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32			
Tension load										
Steel failure										
See Annex C 16										
Characteristic resistance to pull-out for a working life	of 50 yea	rs								
Dry, wet concrete and flooded hole τ _{Rk,C1} [N/mr	n^2] 5,0	4,1	3,7	2,8	2,4	2,4	2,0			
Characteristic resistance to pull-out for a working life		ars								
Dry, wet concrete and flooded hole $\tau_{Rk,C1}$ [N/mr	n²] 2,9	2,3	2,3	1,8	1,5	1,6	1,3			
Installation safety factor γ_{inst} [-]			See	Annex	C16					

Shear load			
Steel failure without lever arm			
		See Anne	ex C 16
Factor for annular gap	$\alpha_{\sf gap}$	[-]	0,5

The anchor shall be used with minimum rupture elongation after fracture $A_5 \ge 9\%$.

Table C25: Seismic performance category C2 of threaded rod for

MO-VHW with installation temperature < -10°C - Hammer drilling, Dustless drilling

Size			M12	M16	M20
Tension load					•
Steel failure					
	See Anne	ex C 17			
Characteristic resistance to pull-out for	or a worki	ng life of	50 years		
Dry, wet concrete and flooded hole	τRk,C2	[N/mm ²]	1,1	1,3	1,5
Characteristic resistance to pull-out for	or a worki	ng life of	100 years		
Dry, wet concrete and flooded hole	τ _{Rk,C2}	[N/mm ²]	0,7	0,9	0,9
Installation safety factor	γinst	[-]	S	ee Annex C	17
Shear load					
Steel failure without lever arm					
	See Anne	ex C 17			
Factor for annular gap	αgap	[-]		0,5	

MO-VHW	
Performances Hammer drilling, Dustless drilling Seismic performance category C2	Annex C 18

Characteristic resistance to combined pull-out and concrete failure $\tau_{Rk,fi}(\theta)$ under fire exposure for threaded rods for hammer or dustless drilling

The characteristic resistance to combined pull-out and concrete failure under fire $\tau_{Rk,fi,p}(\theta)$ shall be determined according to following equation:

$$\tau_{Rk,fi,p}(\theta) = k_{fi,p}(\theta) \cdot \tau_{Rk,cr}$$

where:

$$k_{fi,p}(\theta) = 1$$
 for $\theta < \theta_k$
 $k_{fi,p}(\theta) = 60,79 \cdot \theta^{-1,351} \le 1$ for $\theta \le \theta_{max}$
 $k_{fi,p}(\theta) = 0$ for $\theta > \theta_{max}$

 $\theta_k = 21^{\circ}C$ $\theta_{max} = 406^{\circ}C$

 $τ_{Rk,fi,p}$ = characteristic bond resistance for cracked concrete under fire exposure tor given temperature (θ)

τ_{Rk,cr} = characteristic bond resistance for cracked concrete for concrete strength class C20/25

 $k_{fi,p}(\theta)$ = reduction factor for bond resistance under fire conditions

Figure C1: Reduction factor $k_{fi,p}(\theta)$

Table C26: Steel failure - Characteristic resistance under tension load under fire conditions for threaded rod

Size			M8	M10	M12	M16	M20	M24	M27	M30
	N _{Rk,s,fi(30)}	[kN]	0,37	0,87	1,69	3,14	4,90	7,06	9,18	11,22
Steel grade:	N _{Rk,s,fi(60)}	[kN]	0,33	0,75	1,26	2,36	3,68	5,30	6,89	8,42
4.6; 5.8; 8.8; 10.9	N _{Rk,s,fi(90)}	[kN]	0,26	0,58	1,10	2,04	3,19	4,59	5,97	7,29
	N _{Rk,s,fi(120)}	[kN]	0,18	0,46	0,84	1,57	2,45	3,53	4,59	5,61
Stainless steel grade:	N _{Rk,s,fi(30)}	[kN]	0,73	1,45	2,53	4,71	7,35	10,59	13,77	16,83
A2-70; A4-70; A4-80	N _{Rk,s,fi(60)}	[kN]	0,59	1,16	2,11	3,93	6,13	8,83	11,48	14,03
High corrosion resistant steel grade:	N _{Rk,s,fi(90)}	[kN]	0,44	0,93	1,69	3,14	4,90	7,06	9,18	11,22
1.4529; 1.4565	N _{Rk,s,fi(120)}	[kN]	0,37	0,81	1,35	2,51	3,92	5,65	7,34	8,98

Table C27: Steel failure - Characteristic resistance under tension load under fire conditions for rebar

Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
	N _{Rk,s,fi(30)}	[kN]	0,50	1,18	2,26	4,02	6,28	9,82	16,08
Dobor BC+ FOO C	N _{Rk,s,fi(60)}	[kN]	0,45	1,02	1,70	3,02	4,71	7,36	12,06
Rebar BSt 500 S	N _{Rk,s,fi(90)}	[kN]	0,35	0,79	1,47	2,61	4,08	6,38	10,45
	N _{Rk,s,fi(120)}	[kN]	0,25	0,63	1,13	2,01	3,14	4,91	8,04

Table C28: Steel failure - Characteristic resistance under shear load under fire conditions for threaded rod

Size			M8	M10	M12	M16	M20	M24	M27	M30
	V _{Rk,s,fi(30)}	[kN]	0,37	0,87	1,69	3,14	4,90	7,06	9,18	11,22
	V _{Rk,s,fi(60)}	[kN]	0,33	0,75	1,26	2,36	3,68	5,30	6,89	8,42
	V _{Rk,s,fi(90)}	[kN]	0,26	0,58	1,10	2,04	3,19	4,59	5,97	7,29
Steel grade:	$V_{Rk,s,fi(120)}$	[kN]	0,18	0,46	0,84	1,57	2,45	3,53	4,59	5,61
4.6; 5.8; 8.8; 10.9	Mo _{Rk,s,fi(30)}	[N.m]	0,4	1,1	2,6	6,7	13,0	22,5	33,3	45,0
	$M^{o}_{Rk,s,fi(60)}$	[N.m]	0,3	1,0	2,0	5,0	9,7	16,8	25,0	33,7
	$M^{o}_{Rk,s,fi(90)}$	[N.m]	0,3	0,7	1,7	4,3	8,4	14,6	21,6	29,2
	Mo _{Rk,s,fi(120)}	[N.m]	0,2	0,6	1,3	3,3	6,5	11,2	16,6	22,5
	V _{Rk,s,fi(30)}	[kN]	0,73	1,45	2,53	4,71	7,35	10,59	13,77	16,83
	V _{Rk,s,fi(60)}	[kN]	0,59	1,16	2,11	3,93	6,13	8,83	11,48	14,03
Stainless steel grade:	V _{Rk,s,fi(90)}	[kN]	0,44	0,93	1,69	3,14	4,90	7,06	9,18	11,22
A2-70; A4-70; A4-80	V _{Rk,s,fi(120)}	[kN]	0,37	0,81	1,35	2,51	3,92	5,65	7,34	8,98
High corrosion resistant steel grade:	Mo _{Rk,s,fi(30)}	[N.m]	0,7	1,9	3,9	10,0	19,5	33,7	49,9	67,5
1.4529; 1.4565	$M^{o}_{Rk,s,fi(60)}$	[N.m]	0,6	1,5	3,3	8,3	16,2	28,1	41,6	56,2
	$M^{o}_{Rk,s,fi(90)}$	[N.m]	0,4	1,2	2,6	6,7	13,0	22,5	33,3	45,0
	M ^o Rk,s,fi(120)	[N.m]	0,4	1,0	2,1	5,3	10,4	18,0	26,6	36,0

Table C29: Steel failure - Characteristic resistance under shear load under fire conditions for rebar

Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
	$V_{Rk,s,fi(30)}$ [kN]	0,50	1,18	2,26	4,02	6,28	9,82	16,08
	$V_{Rk,s,fi(60)}$ [kN]	0,45	1,02	1,70	3,02	4,71	7,36	12,06
Rebar BSt 500 S	V _{Rk,s,fi(90)} [kN]	0,35	0,79	1,47	2,61	4,08	6,38	10,45
	$V_{Rk,s,fi(120)}$ [kN]	0,25	0,63	1,13	2,01	3,14	4,91	8,04
Repair BSt 500 S	M ^o _{Rk,s,fi(30)} [N.m]	0,6	1,8	4,1	9,7	18,9	36,8	77,2
	$M^{o}_{Rk,s,fi(60)}$ [N.m]	0,5	1,5	3,1	7,2	14,1	27,6	57,9
	M ^o _{Rk,s,fi(90)} [N.m]	0,4	1,2	2,6	6,3	12,3	23,9	50,2
	M ^o _{Rk,s,fi(120)} [N.m]	0,3	0,9	2,0	4,8	9,4	18,4	38,6

MO-VH, MO-VHW, MO-VHS	
Performances Bond resistance under fire conditions	Annex C 20