

Evaluación Técnica Europea

ETE 13/0780 del 22/09/2021

Organismo de Evaluación Técnica que emite el ETE: Instituto Técnico y de Ensayos

de Construcción de Praga

Nombre comercial del producto de

construcción

Czech Republic eota@tzus.cz

MO-H, MO-HW, MO-HS

para conexión de barras corrugadas

Familia de productos a la que pertenece

el producto de construcción

Código de área del producto: 33

Conexiones de barras corrugadas instaladas

a posteriori

con mortero de inyección MO-H, MO-HW, MO-HS para una vida útil de 50 y/o 100 años

Fabricante Index Técnicas Expansivas, S.L.

P.I. La Portalada II C. Segador 13

26006 Logroño

España

Planta de fabricación Index planta 1

Esta Evaluación Técnica Europea

contiene

17 páginas que incluyen 13 anexos que

forman una parte integral de esta

evaluación.

Esta Evaluación Técnica Europea se emite de acuerdo con el reglamento (UE)

núm. 305/2011, con base en

DEE 330499-01-0601

Esta versión sirve de reemplazo para

ETE 14/0138 emitida el 29/08/2018

Cualquier traducción de esta Evaluación Técnica Europea a otros idiomas debe corresponder completamente con el documento original emitido y debe identificarse como tal.

La comunicación de esta Evaluación Técnica Europea, incluida su transmisión por medios electrónicos, se realizará de forma íntegra (a excepción de los anexos confidenciales mencionados anteriormente). No obstante, se podrá realizar una reproducción parcial con el consentimiento por escrito del Organismo de Evaluación Técnica emisor; el Instituto Técnico y de Ensayos de Construcción de Praga. Cualquier reproducción parcial debe identificarse como tal.

Cualquier traducción de esta Evaluación Técnica Europea a otros idiomas debe corresponder completamente con el documento original emitido y debe identificarse como tal.

La comunicación de esta Evaluación Técnica Europea, incluida su transmisión por medios electrónicos, se realizará de forma íntegra (a excepción de los anexos confidenciales mencionados anteriormente). No obstante, se podrá realizar una reproducción parcial con el consentimiento por escrito del Organismo de Evaluación Técnica emisor; el Instituto Técnico y de Ensayos de Construcción de Praga. Cualquier reproducción parcial debe identificarse como tal.

1. Descripción técnica del producto

Los sistemas de inyección MO-H, MO-HW (tiempo de curado más rápido) y el sistema de inyección MO-HS (mayor tiempo de procesamiento) se utilizan para la conexión, mediante anclaje o juntas superpuestas, de barras de refuerzo (corrugadas) en estructuras preexistentes de hormigón de peso normal. El diseño de las conexiones de barras corrugadas instaladas a posteriori se realiza de acuerdo con la normativa para construcciones de hormigón armado.

Las barras de refuerzo de acero cuentan con un diámetro de 8 a 25 mm y los morteros químicos MO-H, MO-HW, MO-HS se utilizan para las conexiones entre las barras corrugadas. El elemento de acero se coloca en un orificio perforado relleno con mortero de inyección y se ancla mediante la unión entre el elemento empotrado, el mortero de inyección y el hormigón.

La ilustración y la descripción del producto se adjuntan en el anexo A.

2. Especificación de uso previsto de acuerdo con el DEE pertinente

Las prestaciones indicadas en la sección 3 solo son válidas si el anclaje se utiliza de acuerdo con las especificaciones y condiciones indicadas en el anexo B.

Las disposiciones incluidas en esta Evaluación Técnica Europea se basan en una supuesta vida útil del anclaje de 50 años y/o 100 años. Las indicaciones proporcionadas sobre la vida útil no pueden interpretarse como una garantía por parte del fabricante, sino que deben considerarse solo como un medio a la hora de elegir los productos en relación con la vida útil esperada de las obras dentro de lo económicamente razonable.

3. Prestaciones del producto y referencias a los métodos utilizados para su evaluación

3.1 Resistencia mecánica y estabilidad (RBO 1)

Característica esencial	Prestaciones
Fuerza de adherencia de las barras corrugadas instaladas	Véase anexo C 1
a posteriori	
Factor de reducción	Véase anexo C 1
Factor de amplificación para la longitud mínima de anclaje	Véase anexo C 1

3.2 Seguridad en caso de incendio (RBO 2)

	1010 (1120 2)
Característica esencial	Prestaciones
Reacción al fuego	Clase (A1) según EN 13501-1
Resistencia al fuego	Prestación no evaluada

3.3 Aspectos generales relacionados con la aptitud para el uso

La durabilidad y la funcionalidad solo están garantizadas si se mantienen las especificaciones de uso previsto de acuerdo a lo expuesto en el anexo B 1.

4. Sistema de Evaluación y Verificación de la Constancia de Prestaciones (EVCP) aplicado en referencia a su base legal

Según la Decisión 96/582/EC de la Comisión Europea¹ se aplicará el sistema de Evaluación y Verificación de la Constancia de Prestaciones (véase el anexo V del Reglamento (UE) nº 305/2011) que figura en la siguiente tabla.

Diario Oficial de las Comunidades Europeas (actual DOUE); L 254 del 08.10.1996

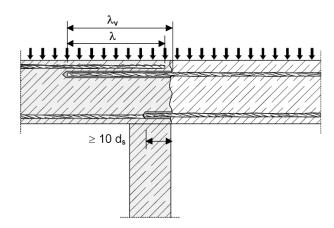
Producto	Uso previsto	Nivel o clase	Sistema
Anclajes metálicos	Para la fijación y/o soporte de		
para uso en hormigón	elementos estructurales de		
	hormigón o unidades pesadas	-	1
	como revestimientos y falsos		
	techos		

5. Detalles técnicos necesarios para la implementación del sistema EVCP, según lo dispuesto en el DEE pertinente

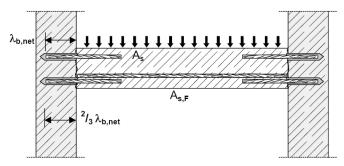
El control de producción en fábrica se realizará de acuerdo con el plan de control que forma parte de la documentación técnica de esta Evaluación Técnica Europea. El plan de control se establece en el contexto del sistema de control de producción en fábrica operado por el fabricante y depositado en el Instituto Técnico y de Ensayos de Construcción de Praga.² Los resultados del control de producción en fábrica se registrarán y evaluarán de acuerdo con lo dispuesto en el plan de control.

Emitido en Praga el 22.09.2021

Por


Ing. Mária Schaan

Jefa del Organismo de Evaluación Técnica


-

El plan de control es una parte confidencial de la documentación de la Evaluación Técnica Europea, este no se publica junto con la ETE y solo se entrega al organismo autorizado involucrado en el procedimiento de EVCP.

Figura A1: Junta superpuesta para conexiones de barras corrugadas de placas y vigas

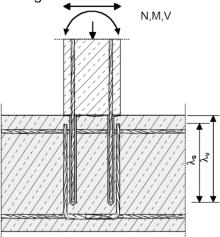


Figura A3: Anclaje final de placas o vigas, diseñado como simplemente apoyado

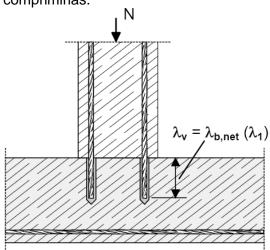

una columna o pared donde las barras corrugadas están sometidas a tensión

Figura A2: Junta superpuesta en la base de

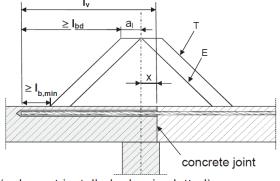


Figura A4: Conexión de barras corrugadas para componentes sometidos principalmente a esfuerzos de compresión.

Las barras corrugadas se tensan al comprimirlas.

Figura A5: Anclaje de refuerzo para cubrir la línea de fuerza de tensión activa

(only post-installed rebar is plotted)

Leyenda para la figura A5

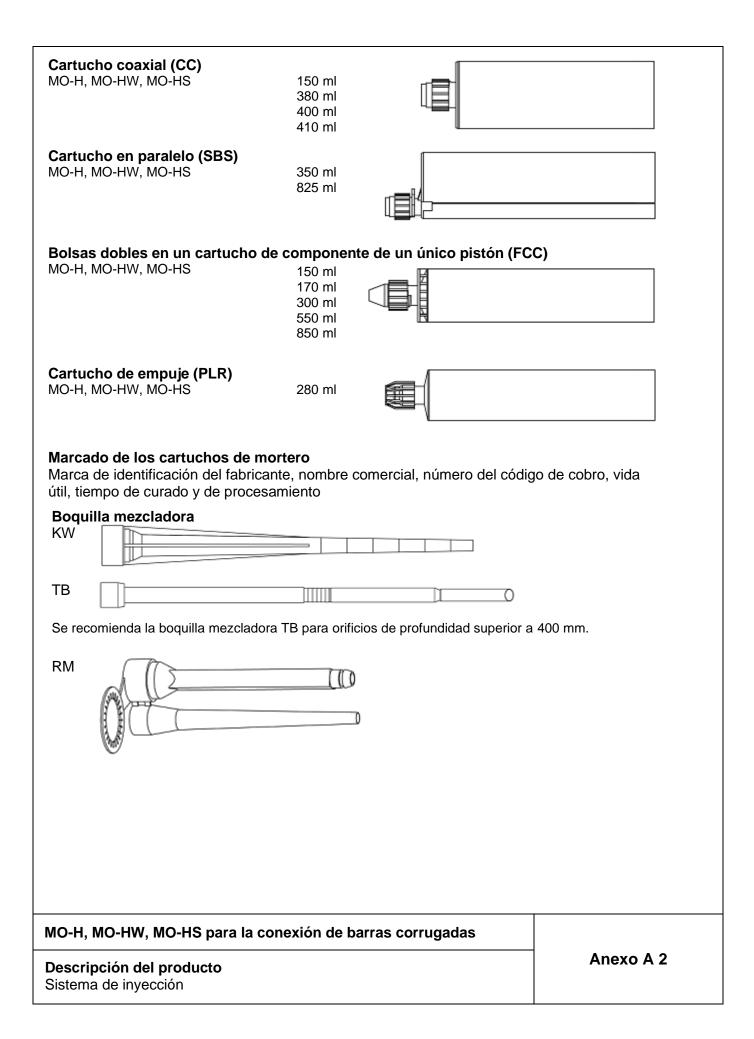
T fuerza de tensión activa

E envolvente de M_{ed}/z + N_{ed} (véase EN 1992-1-1, figura 9.2)

x distancia entre el punto de apoyo teórico y la junta de hormigón

Nota para las figuras A1 a A5:

En las figuras no se traza ningún refuerzo transversal, este deberá estar presente al estar requerido por la norma EN 1992-1-1.


La transferencia cortante entre el hormigón viejo y el nuevo deberá ser diseñada según la norma EN 1992-1-1.

MO-H, MO-HW, MO-HS para la conexión de barras corrugadas

Descripción del producto

Estado de instalación y ejemplos de uso de barras corrugadas.

Anexo A 1

Barra corrugada Ø8, Ø10, Ø12, Ø16, Ø20, Ø25

Figura A6: Barra de refuerzo

Valor mínimo del área corrugada relativa f_{R,min} según EN 1992-1-1: 2004.

El diámetro exterior máximo de la barra corrugada sobre las corrugas será:
 Diámetro nominal de la corruga d + 2 • h (h≤0,07 • d)
 (d: diámetro nominal de la barra; h: altura de la corruga de la barra)

Tabla A1: Materiales

Producto Barras y varillas desenrolla		desenrolladas	
Clase		В	С
Límite de fluencia caracterís	stico f _y k o f _{0,2k} (MPa)	400 has	ta 600
Valor mínimo para k = (f₁/F₂)k		≥ 1,08	≥ 1,15 <1,35
Deformación característica bajo fuerza máxima ε _{uk} (%)		≥ 5,0	≥ 7,5
Plegabilidad		Ensayo de plegado/replegado	
Desviación máxima de la masa nominal (barra individual) (%)	Tamaño nominal de la barra (mm) ≤ 8 > 8	± 6, ± 4,	
Adherencia: Área corrugada mínima relativa, f _{R,min}	Tamaño nominal de la barra (mm) 8 a 12 > 12	0,0 ² 0,05	

MO-H, MO-HW, MO-HS para la conexión de barras corrugadas	
Descripción del producto Barra corrugada y materiales	Anexo A 3

Especificaciones de uso previsto

Anclajes sujetos a:

Carga estática y cuasi estática.

Materiales de base

- Hormigón de peso normal armado o no armado según EN 206:2013
- Clases de resistencia C12/15 a C50/60 según EN 206:2013.
- Porcentaje máximo de cloruro en hormigón del 0,40 % (CL 0,40) en relación al contenido de cemento según la norma EN 206:2013.
- Hormigón no carbonatado.

Nota: En caso de haber una superficie carbonatada en la estructura de hormigón preexistente, la capa carbonatada se eliminará en el área de la conexión de la barra corrugada instalada a posteriori (con un diámetro d_s + 60 mm) antes de la instalación de la nueva barra. La profundidad del hormigón que se debe eliminar ha de corresponder al menos a un recubrimiento de hormigón mínimo de acuerdo con EN 1992-1-1.

Lo anterior puede pasarse por alto si los componentes del edificio son nuevos y no están carbonatados.

Rango de temperatura:

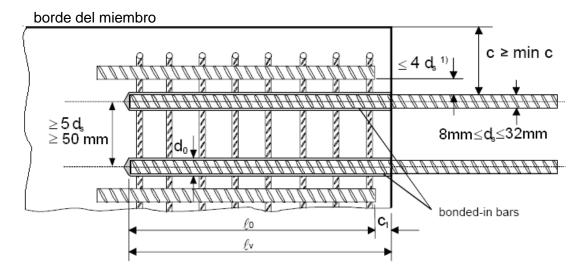
-40°C a +80°C (temperatura máxima a corto plazo +80°C y temperatura máxima a largo plazo +50°C)

Condiciones de uso (condiciones ambientales)

• Las barras corrugadas se pueden utilizar en hormigón seco o húmedo.

Diseño:

- Los anclajes están diseñados bajo la responsabilidad de un ingeniero con experiencia en anclajes y trabajos en hormigón. .
- Se deben preparar notas de cálculo verificables, así como planos; todo ello con las fuerzas que se vayan a transmitir en mente.
- Cálculo según EN 1992-1-1 y EN 1992-1-2.
- La posición del refuerzo en la estructura preexistente se determinará sobre la base de la documentación de construcción y se tendrá en cuenta al diseñar.

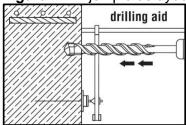

Instalación:

- Hormigón seco o húmedo
- No debe instalarse en agujeros inundados.
- Perforación de orificios mediante taladro percutor o modo de taladro de aire comprimido.
- La instalación de barras corrugadas a posteriori debe ser realizada únicamente por un instalador capacitado adecuado y bajo supervisión in situ. Las condiciones en las que se puede considerar que un instalador tiene la formación adecuada, así como las condiciones de supervisión in situ dependen de los miembros en los que se realice la instalación.
- Compruebe la posición de las barras corrugadas preexistentes (si no se conoce la posición, esta se determinará mediante un detector de barras adecuado para este propósito)

MO-H, MO-HW, MO-HS para la conexión de barras corrugadas	
Uso previsto Especificaciones	Anexo B 1

Figura B1: Reglas generales de diseño de construcción para barras corrugadas adheridas

- Solo se pueden transmitir las fuerzas de tensión en el eje de la barra corrugada.
- La transferencia de fuerzas cortantes entre el hormigón nuevo y la estructura preexistente se diseñará adicionalmente de acuerdo con EN 1992-1-1.
- Las juntas para el hormigonado deben ser rugosas al menos hasta el punto que el agregado sobresalga.


- ¹⁾ Si la distancia libre entre barras traslapadas excede 4d_s entonces la longitud del empalme se incrementará por la diferencia entre la distancia de la barra libre y 4d_s
- c revestimiento de hormigón para barra adherida
- c₁ revestimiento de hormigón para el extremo de la barra adherida
- min c revestimiento mínimo de hormigón según Tabla B1 de esta evaluación
- d_s diámetro de la barra adherida
- longitud de empalme según EN 1992-1-1: 2004
- ℓ_v profundidad de empotramiento efectiva $\geq \ell_0 + c_1$
- do diámetro nominal de la broca, consulte la tabla B2

MO-H, MO-HW, MO-HS para la conexión de barras corrugadas	
Uso previsto Reglas generales de diseño de construcción	Anexo B 2

Tabla B1: Revestimiento mínimo de hormigón c_{min} en función del método de perforación

Método de perforación	Diámetro de la	Sin ayuda de	Con ayuda de
	barraф	perforación	perforación
		C _{min}	C _{min}
Perforación por	< 25 mm	30 mm + 0,06 ℓ_{v} ≥ 2 ϕ	30 mm + 0,02 ℓ_{v} ≥ 2 ϕ
percusión	≥ 25 mm	40 mm + 0,06 ℓ_{v} ≥ 2 ϕ	40 mm + 0,02 ℓ _ν ≥ 2 φ
Perforación con aire	< 25 mm	50 mm + 0,08 ℓ _v	50 mm + 0,02 ℓ _v
comprimido	≥ 25 mm	60 mm + 0,08 ℓ _v ≥ 2 φ	60 mm + 0,02 ℓ _ν ≥ 2 φ

Figura B2: Ejemplo de ayuda de perforación

Longitud mínima de anclaje $\ell_{\text{bd,PIR}}$ y longitud mínima de empalme de anclaje $\ell_{\text{0,PIR}}$

Longitud mínima de anclaje

 $\ell_{b,PIR} = \alpha_{lb} \cdot \ell_{b,min}$

 $\alpha_{lb} = \alpha_{lb,100y}$ = factor de amplificación para la longitud mínima de anclaje

(véase anexo C 1, tabla C2)

ℓ_{b,min} = longitud mínima de anclaje de la barra corrugada moldeada según EN 1992-

1-1, eq. 8.6

Longitud mínima de traslape

 $\ell_{0,PIR} = \alpha_{lb} \cdot \ell_{0,min}$

 $\alpha_{lb} = \alpha_{lb,100y}$ = factor de amplificación para la longitud mínima de anclaje

(véase anexo C 1, tabla C2)

 $\ell_{b,min}$ = longitud mínima de empalme de la barra corrugada moldeada según EN 1992-

1-1, eq. 8.11

Tabla B2: Diámetro de perforación y profundidad máxima de anclaje

Diámetro de la barra corrugada	Diámetro nominal de perforación	Profundidad de empotramiento máxima permitida
$d_{nom}^{1)}$	d_cut	$\ell_{ extsf{v}, extsf{max}}$
[mm]	[mm]	[mm]
8	12 (10)	400
10	14 (12)	500
12	16	600
14	18	700
16	20	800
20	25	1000
25	32	1000

¹⁾ El diámetro exterior máximo de la barra corrugada sobre las corrugas será: diámetro nominal de la barra d_{nom} + 0,20 d_{nom}

MO-H, MO-HW, MO-HS para la conexión de barras corrugadas	
Uso previsto	
Revestimiento mínimo de hormigón	Anexo B 3
Longitud mínima de anclaje	
Longitud máxima de la instalación	

Tabla B3: Procesamiento y tiempo de carga

MO-H		
Temperatura de aplicación	Tiempo de procesamiento	Tiempo de carga
+5 a +10°C	10 minutos	145 minutos
+10 a +15°C	8 minutos	85 minutos
+15 a +20°C	6 minutos	75 minutos
+20 a +25°C	5 minutos	50 minutos
+25 a +30°C	4 minutos	40 minutos

El tiempo de procesamiento se refiere a la temperatura más alta dentro del rango.

El tiempo de carga se refiere a la temperatura más baja del rango.

Los cartuchos deben adecuarse a una temperatura mínima de +5°C.

MO-HW		
Temperatura de aplicación	Tiempo de procesamiento	Tiempo de carga
+1 a +5°C	10 minutos	75 minutos
+5 a +20 °C	5 minutos	50 minutos
+20 °C	100 segundos	20 minutos

El tiempo de procesamiento se refiere a la temperatura más alta dentro del rango.

El tiempo de carga se refiere a la temperatura más baja del rango.

Los cartuchos deben adecuarse a una temperatura mínima de +5°C.

MO-HS		
Temperatura de aplicación	Tiempo de procesamiento	Tiempo de carga
+15 a +20°C	15 minutos	5 horas
+20 a +25°C	10 minutos	145 minutos
+25 a +30°C	7,5 minutos	85 minutos
+30 a +35°C	5 minutos	50 minutos
+35 a +40°C	3,5 minutos	40 minutos

El tiempo de procesamiento se refiere a la temperatura más alta dentro del rango.

El tiempo de carga se refiere a la temperatura más baja del rango.

Los cartuchos deben adecuarse a una temperatura mínima de +15°C.

MO-H, MO-HW, MO-HS para la conexión de barras corrugadas	
Uso previsto Procesamiento y tiempo de carga	Anexo B 4

Tabla B5: Cepillo

Tamaños		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25
Diámetro del orificio de perforación do	[mm]	12(10)	14(12)	16	18	20	25	32
Diámetro de la cabeza de los cepillos	[mm]	14	14	19	22	22	29	40
Longitud de la cabeza de los cepillos	[mm]				75			

Si fuere necesario, use accesorios adicionales y extensiones para que la boquilla de aire y el cepillo alcancen la parte posterior del orificio.

Profundidad máx. del agujero	Configuración del cepillo/extensión	Parte
250 mm	Cepillo estándar	(a)
550 mm	Unidad de cabezal de cepillo + unidad de mango	(b) + (c)
850 mm	Unidad de cabezal de cepillo + pieza de extensión + unidad de mango	(b) + (d) + (c)
1150 mm	Unidad de cabezal de cepillo + 2x piezas de extensión + unidad de mango	(b) + (d) + (d) + (c)

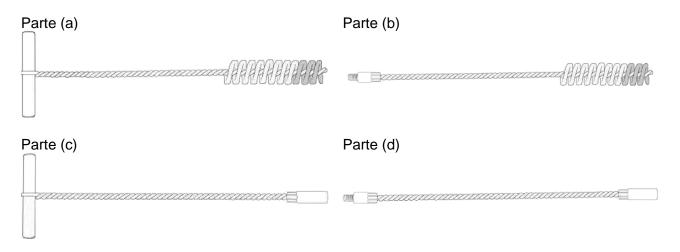
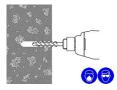
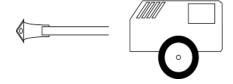



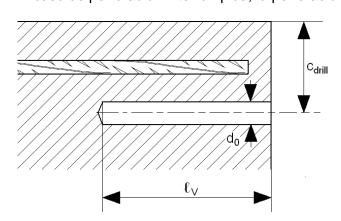
Tabla B6: Manguera de extensión para agujeros profundos

Tamaños		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25
Diámetro del agujero	[mm]	12(10)	14(12)	16	18	20	25	32
Manguera de extensión	[mm]	Ç	9			14		
Tapón de resina	[mm]	-	-	-	-	18	22	30


MO-H, MO-HW, MO-HS para la conexión de barras corrugadas	
Uso previsto	Anexo B 6
Cepillo	7 moxe 2 c
Manguera de extensión para agujeros profundos	

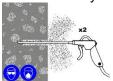
Perforación del agujero

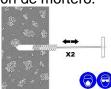
Taladre el orificio con la profundidad necesaria utilizando un taladro percutor con una broca de carburo en modo rotatorio o con un taladro de aire comprimido.

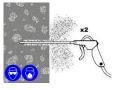


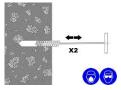
Perforación por percutor rotatorio

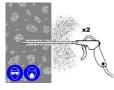
Taladro de aire comprimido


Antes de perforar, retire el hormigón carbonatado. En caso de perforación interrumpida, la perforación se rellenará con mortero.

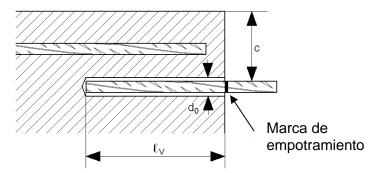



- Observe la cobertura de hormigón c, tal y como se expone en el plan de instalación y en la tabla B1.
- Taladre en paralelo al borde y a la barra corrugada preexistente


Limpieza del agujero


El orificio debe estar libre de polvo, escombros, agua, hielo, aceite, grasa y otros contaminantes antes de la invección de mortero.

- Realice dos soplados desde la parte posterior del agujero con aire comprimido libre de aceites (mín. 6 bar) hasta que la corriente de aire de retorno esté libre de polvo.
- Cepille dos veces con el tamaño de cepillo especial (Ø del cepillo ≥ Ø del orificio) insertando el cepillo en la parte posterior del orificio con un movimiento giratorio. El cepillo producirá una resistencia natural al entrar en el orificio de anclaje. Si no es así, haga el favor de utilizar un cepillo nuevo o un cepillo de mayor diámetro.
- Repita las operaciones 1 y 2.
- Vuelva a soplar 1 vez más con aire comprimido hasta que la corriente de aire de retorno esté libre de polvo perceptible.


MO-H, MO-HW, MO-HS para la conexión de barras corrugadas

Uso previsto
Instrucciones de instalación I

Anexo B 7

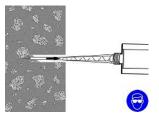
Inyección de mortero

Si el orificio acumula agua después de la limpieza inicial, esta debe eliminarse antes de inyectar la resina.

Antes de usar, asegúrese de que la barra corrugada esté seca y libre de aceites u otros residuos.

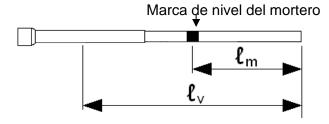
Marque la profundidad de empotramiento en la barra corrugada (p. ej., con cinta) ℓ_{v}

Inserte la barra corrugada en el orificio para verificar el agujero y la profundidad de fraguado $\ell_{\rm V}$


- Verifique la fecha de vencimiento impresa en el cartucho. No utilice el producto si ha caducado
- Temperatura de la bolsa:
 Debe oscilar entre +5°C y +40°C cuando esté en uso
- Temperatura del material de base en el momento de la instalación:
 Debe oscilar entre +5°C y +40°C
- Instrucciones de transporte y almacenamiento:
 Consérvese en un lugar fresco, seco y oscuro entre +5°C y +20°C para alcanzar la máxima vida útil

Seleccione la boquilla mezcladora estática adecuada para la instalación, abra el cartucho/bolsa y enrósquela en la boca del cartucho. Inserte el cartucho en la pistola de aplicación correcta.

Extrude la primera parte del cartucho hasta lograr un color uniforme sin dejar marcas en la resina


Si es necesario, corte el tubo de extensión a la medida de la profundidad del orificio y empújelo hacia el extremo de la boquilla mezcladora y (para barras corrugadas de diámetro 16 mm o más) coloque el tapón de resina adecuado en el otro extremo. Coloque el tubo de extensión y el tapón de resina.

Inserte la boquilla mezcladora (tapón de resina/tubo de extensión si corresponde) en el fondo del agujero. Comience a extrudir la resina y retire lentamente la boquilla mezcladora del orificio, asegurándose de que no haya bolsas de aire mientras retira la boquilla. Rellene el orificio hasta aproximadamente entre ½ y ¾ de su capacidad y retire la boquilla por completo.

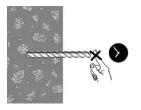
MO-H, MO-HW, MO-HS para la conexión de barras corrugadas	
Uso previsto Instrucciones de instalación II	Anexo B 8

Inserción de la barra corrugada

Marque el nivel de mortero ℓ_m y la profundidad de empotramiento ℓ_v con cinta o rotulador en la extensión de inyección.

Estimación rápida: $\ell_m = 1/2 \cdot \ell_v$

Prosiga con la inyección hasta que la marca de nivel del mortero ℓ_m se pueda apreciar.



Inserte la barra corrugada, libre de aceite u otros agentes antiadherentes, hasta el fondo del orificio con un giro hacia adelante y hacia atrás, asegurándose de que todas las roscas estén completamente revestidas. Ajuste la posición correcta dentro del tiempo de trabajo indicado.

Si cualquier exceso de resina saliese del orificio de manera uniforme alrededor del elemento de acero, sería síntoma de que el orificio está lleno.

Este exceso de resina debe eliminarse de alrededor de la boca del orificio antes de que fragüe.

Deje que cure el anclaje.

No toque el anclaje hasta que haya transcurrido el tiempo adecuado de carga/curado en función de las condiciones del sustrato y la temperatura ambiente.

MO-H, MO-HW, MO-HS para la conexión de barras corrugadas

Uso previsto
Instrucciones de instalación III

Resistencia de adherencia de diseño de la barra corrugada instalada a posteriori $f_{bd,PIR}$ y $fb_{d,PIR,100y}$ para una vida útil de 50 y 100 años

 $f_{bd,PIR} = k_b \cdot f_{bd}$

k_b = factor de reducción

f_{bd} = resistencia de adherencia de diseño de la barra corrugada moldeada según EN 1992-1-1

Tabla C1: Valores de la resistencia de adherencia de diseño de la barra corrugada instalada a posteriori f_{bd,PIR} = f_{bd,PIR,100y} con factor de

reducción $k_b = k_{b, 100y}$ para cualquier método de perforación en buenas condiciones de adherencia

44.10.0	autoronoia									
	Ø de la barra corrugada de 8 a 16									
	e de nigón	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
k_b	[-]	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
f _{bd,PIR}	[N/mm²]	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3
	Ø de la barra corrugada 20									
	se de nigón	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
k_b	[-]	1,0	1,0	1,0	1,0	1,0	1,0	1,0	0,92	0,86
f _{bd,PIR}	[N/mm ²]	1,6	2,0	2,3	2,7	3,0	3,4		3,7	
				Ø de la k	oarra cor	rugada 2	5			
	se de nigón	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
k _b	[-]	1,0	1,0	1,0	1,0	1,0	0,90	0,82	0,76	0,71
f _{bd,PIR}	[N/mm²]	1,6	2,0	2,3	2,7	3,0				

Los valores tabulados son válidos en buenas condiciones de adherencia según EN 1992-1-1. Para todas las demás condiciones de adherencia, multiplique los valores por 0,7.

Tabla C2: Factor de amplificación para la longitud mínima de anclaje

Barra corrugada	Factor de	Clase de hormigón
	amplificación	C12/15 hasta C50/60
Ø 8 hasta Ø 25	$\alpha_{lb} = \alpha_{lb,100y}$	1,0

MO-H, MO-HW, MO-HS para la conexión de barras corrugadas	
Prestaciones Valores de cálculo de la máxima resistencia de adherencia	Anexo C 1